소셜 미디어의 급속한 발달로 인해 사용자가 생성한 텍스트 데이터가 급증하고 있다. 오피니언 마이닝에서는 이러한 사용자의 텍스트를 분석하여 사용자의 의견을 추출하고 있다. 특히 오피니언 마이닝의 세부 분야인 정서분석에서는 텍스트에서 사용자의 정서를 추출하는 것이 주된 목적인데, 이를 위해서는 정서 단어 목록 구축이 필수적이다. 본 논문에서는 소셜 미디어의 정서 분석을 위해서 대표적인 소셜 미디어인 페이스북 텍스트를 사용하여 정서 단어 목록을 구축하였다. 페이스북 텍스트로부터 데이터를 수집한 후 정서 단어를 선별하고 설문을 통하여 정서가와 활성화 차원을 측정하였다. 그 결과 정서가, 활성화 차원을 포함한 267개 정서 단어 목록을 구축하였다.
User-created text data are increasing rapidly caused by development of social media. In opinion mining, User's opinions are extracted by analyzing user's text. A primary goal of sentiment analysis as a branch of opinion mining is to extract user's opinions from a text that is required to build a list of emotion terms. In this paper, we built a list of emotion terms to analyse a sentiment of social media using Facebook as a representative social media. We collected data from Facebook and selected a emotion terms, and measured the dimensions of valence and activation through a survey. As a result, we built a list of 267 emotion terms including the dimension of valence and activation.