For facilitated olefin/paraffin separation, poly(ethylene-alt-maleic anhydride)-g-O-(2-aminopropyl)-O′-(2-methoxyethyl) polypropylene glycol (PEMA-g-PPG) is reported by facile, cheap and moderate-condition synthesis. PEMA-g-PPG provided effective polymer matrix for partially polarized silver nanoparticles (AgNPs) and 7,7,8,8-tetracyanoquinodimethane (TCNQ). AgNPs could facilitate olefin transport through π-complexation, while TCNQ activated surface of AgNPs for partial polarization as a strong electron acceptor. The FT-IR and TEM image supported improved interactions between PEMA-g-PPG and AgNPs. The best separation performance was obtained with 1:3 wt ratio of PEMA-g-PPG:AgNPs, showing 7.8 GPU for mixed gas permeance and 17.5 selectivity for propylene/propane.
We fabricated dual-phase free-standing polymeric membrane for high performance CO2/N2 separation, introducing amphiphilic, CO2-philic copolymer via one-step free radical polymerization, or (2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl methacrylate)-graft-poly(oxyethylene methacrylate) (PBE). PBE filler partially interacts with Pebax polymer matrix to generate the interconnected CO2 philic network, exhibiting a microphase-separated, or dual-phase behavior in Pebax matrix. The performance of CO2/N2 separation was increased according to the PBE content, with the maximum selectivity at 5 wt%. The enhancement of Pebax/PBE CO2-philic membrane was attributed to the formation of CO2-philic channel consisting of ether oxygens and triazole groups. The best performance was CO2 permeability of 175.3 Barrer and CO2/N2 selectivity of 48.2.
We present a facile, room temperature synthesis of poly(ethylenealt- maleic anhydride)-graft-poly(propylene glycol) (PEMA-g-PPG) graft copolymer-based CO2/N2 gas separation membrane with 100% conversion reaction without any further purification process. As confirmed by the Fourier transform infrared (FT-IR) and nuclear magnetic resonance (1H NMR) spectroscopy, the PEMA-g-PPG was successfully synthesized with 100% conversion of PEMA and PPG monomers. It was confirmed that the PEMA-g-PPG was amorphous and rubbery state according to the X-ray diffraction (XRD) and differential scanning calorimetry (DSC0 results. Therefore, PEMA-g-PPG/polysufulfone composite membrane exhibited high performance of CO2 permeability (99.1 Barrer) and selectivity (82.6 for CO2/N2 and 26.8 for CO2/CH4), surpassing conventional PEBAX block copolymer membrane.
분리막의 기체에 대한 선택투과성을 이용하여 혼합 가스 또는 유기증기 중의 특정성분을 분리하는 방법이 기체분리막 법이다. 최초로 실용화 된 것은 비대칭막이 개발되고 충분히 기체 투과량이 확보된 최근의 일이다. 기체분리막법의 최초 응용은 수소회수였으며, 최근에는 질소 분리, 제습, 산소농축, 메탄농축 등에 적용되고 있다. 최근 들어 기체분리막 공정은 천연가스, 비전통 가스, 바이오가스의 분리 정제 등에 적용되며. 에너지 분야로 응용이 확대되어가고 있다. 에너지 분야는 혹독한 운전조건, 높은 신뢰성을 요구 하는 분야이기 때문에 분리막에 대한 요구도가 높은 분야이다. 따라서 분리막의 신뢰성을 확보하기 위한 노력이 필요하다. 본 강연에서는 향후 분리막의 에너지 산업응용과 기체분리막의 해결과제에 대한 언급을 한다.
Vortex tube is a simple device which can produce two streams of hot and cold temperature without any chemical reaction from a compressed gas stream. Recently, it is expected to be not only one of the possible alternative cooling methods to reduce environmental hazard but also various applications. Small size vortex tube is widely used in industrial application, just like a spot cooling devices, however, it is not enough to study length effect of the vortex tube yet. Therefore, experiments were carried out in various vortex length ratio(L/D=10-55) to find an appropriate geometry of vortex tube length at 5.6mm diameter, under optimum conditions, i.e. vortex nozzle area ratio(Sn=0.155) and cold end orifice diameter ratio(ζ=0.446). Working fluids was used air. The results shows that L=25D is design guide in the vortex tube.
본 논문에서는 고에너지 전자선(6MeV)을 조사한 피부의 세포막 모델에서 공기의 주요 구성성분인 N2-O2 혼합기체가 압력차에 따른 투과도차의 변화를 나타내고 결국 N2-O2 분리투과성의 변화로 나타내어 기체분 자가 분리 전달되는 특성을 연구하였다. 이 실험에 사용한 재료로 피부의 세포막 모델은 polydimethyl siloxa ne (PDMS)분말을 polysulfone과 결합시킨 비다공성 복합막, 압축공기와 순도 99.9%인 산소, 질소기체통, 산 소분석기(LC-700H, Japan), soap-bubble flow meter, wet-test meter, pressure regulator, back-pressure regulator, permeation cell, Linac 전자선 조사기 등을 사용하였다. 실험방법으로는 N2-O2 기체투과 장치를 이용하여 피 부세포막모델의 온도는 36.5℃로 고정한 후에 기체의 온도도 15℃로 고정하고 조작압력법위를 1∼6 kgf/㎠ 로 하며 각각 1 kgf/㎠ 단위로 측정하였다. 방사선을 조사한 피부의 고분자막(세포막모델)에서 공기를 구성 한 N2-O2 혼합기체의 분자가 압력차에 따른 투과도차가 발생하여 피부세포에 비정상적으로 전달되는 과정을 실험을 한 결과 아래와 같은 결론을 추론하게 되었다. 피부의 고분자 막(세포막모델)에서 N2-O2 혼합기체의 투과분리특성의 변화에 대하여 알아본 결과 방사선을 조사하지 않은 때 질소와 산소의 투과도 변화는 각각 1.19 × 10-4 ∼ 2.43 × 10-4과 1.72 × 10-4 ∼ 2.6 × 10-4[㎤(STP)/㎠ · sec · cmHg]이며 방사선조사로 질소와 산소의 투과도 변화는 각각 0.19 × 10-4 ∼ 0.56 × 10-4 과 0.41 × 10-4 ∼ 0.76 × 10-4 [㎤(STP)/㎠ · sec · cmHg]이며 4∼10배 정도 낮아짐을 알 수가 있었고 방사선을 조사하지 않은 때 질소에 대한 산소의 이상분리인자 α *의 값은 1.32∼0.42로 나타내었으며 방사선조사로 질소에 대한 산소의 이상분리인자 α * 의 값은 0.237∼0.125이며 4∼5배 정도 낮아짐을 나타내었다. 또한, 압력차가 1∼6 kgf/㎠로 증가함에 따라서 작업변수인 cut가 0에 접근할수록 투과도상의 산소부화도는 증가하지만 반면에 압력비 Pr이 0에 가까워 질수록 투과도상의 산소부화도는 방사선조사로 4∼19배 정도 감소하였다. 방사선의 조사 유·무에 관계없이 압력차가 1∼6 kgf/㎠ 로 증가함에 따라서 질소, 산소 및 공기의 투과도는 증가하였지만 질소에 대한 산소의 선택성은 감소하였다.