The sunspot area is a critical physical quantity for assessing the solar activity level; forecasts of the sunspot area are of great importance for studies of the solar activity and space weather. We developed an innovative hybrid model prediction method by integrating the complementary ensemble empirical mode decomposition (CEEMD) and extreme learning machine (ELM). The time series is first decomposed into intrinsic mode functions (IMFs) with different frequencies by CEEMD; these IMFs can be divided into three groups, a high-frequency group, a low-frequency group, and a trend group. The ELM forecasting models are established to forecast the three groups separately. The final forecast results are obtained by summing up the forecast values of each group. The proposed hybrid model is applied to the smoothed monthly mean sunspot area archived at NASA's Marshall Space Flight Center (MSFC). We find a mean absolute percentage error (MAPE) and a root mean square error (RMSE) of 1.80% and 9.75, respectively, which indicates that: (1) for the CEEMD-ELM model, the predicted sunspot area is in good agreement with the observed one; (2) the proposed model outperforms previous approaches in terms of prediction accuracy and operational efficiency.
In this paper, the characteristic of intrinsic mode function(IMF) and its orthogonalization of ensemble empirical mode decomposition(EEMD), which is often used in the analysis of the non-linear or non-stationary signal, has been studied. In the decomposition process, the orthogonal IMF of EEMD was obtained by applying the Gram-Schmidt(G-S) orthogonalization method, and was compared with the IMF of orthogonal EMD(OEMD). Two signals for comparison analysis are adopted as the analytical test function and El Centro seismic wave. These target signals were compared by calculating the index of orthogonality(IO) and the spectral energy of the IMF. As a result of the analysis, an IMF with a high IO was obtained by GSO method, and the orthogonal EEMD using white noise was decomposed into orthogonal IMF with energy closer to the original signal than conventional OEMD.
최근 수문자료에서 비정상성 현상들이 관측됨에 따라 비정상성 빈도해석에 관한 연구들이 활발하게 진행되고 있다. 시간에 따라 변화하는 통계 적 특성을 고려하기 위하여 다양한 형태의 비정상성 확률분포형이 제시되고 있으며, 비정상성 매개변수를 추정할 수 있는 다양한 방법들이 연구되 고 있는 추세이다. 본 연구에서는 앙상블 경험적 모드분해법을 이용한 비정상성 Gumbel 분포형의 매개변수 추정방법을 제시하고 기존에 비정상 성 매개변수 추정방법으로 주로 사용되어온 최우도법과 비교해보고자 하였다. 국내 자료의 적용을 위하여 기상청 지점의 다양한 지속기간에 대해 경향성이 나타나는 연 최대치 강우자료를 사용하였다. 적용 결과 선형적 경향성을 나타내는 자료에 대해서는 두 가지 방법 모두 적절한 모형을 선 정하였으나, 2차 곡선 형태의 경향성이 존재하는 자료에 대해서는 앙상블 경험적 모드분해법의 경우에만 이러한 경향성을 반영하는 비정상성 Gumbel 모형을 선정하였다.