Radon is a radioactive gas material, which is not detectable by humans because of the absence of color and odor. Radon gas can exist indoors through a number of pathways and long-term exposure to such material can affect the human body, which may result in serious health issues such as lung-cancer. It is thus essential to reduce and maintain indoor radon concentration in order that potential health risks from radon can be diminished. In order to achieve the aforementioned goals, it is requisite to utilize a practical detector which is capable of continuous radon monitoring. In relation to this, a recently developed prototype radon detector, i.e., RS9A, provides highperformance comparable to existing research-grade radon detectors for the purpose of continuous radon monitoring in the air. Furthermore, RS9A is a convenient piece of equipment for use by the public as it is compact in size and affordable. In this paper, we conducted continuous measurements of indoor radon concentrations by using sets of RS9A and evaluated the equivalence of RS9A in terms of quality assurance.