In 2016, an earthquake occurred at Gyeongju, Korea. At the Wolsong site, the observed peak ground acceleration was lower than the operating basis earthquake (OBE) level of Wolsong nuclear power plant. However, the measured spectral acceleration value exceeded the spectral acceleration of the operating-basis earthquake (OBE) level in some sections of the response spectrum, resulting in a manual shutdown of the nuclear power plant. Analysis of the response spectra shape of the Gyeongju earthquake motion showed that the high-frequency components are stronger than the response spectra shape used in nuclear power plant design. Therefore, the seismic performance evaluation of structures and equipment of nuclear power plants should be made to reflect the characteristics of site-specific earthquakes. In general, the floor response spectrum shape at the installation site or the generalized response spectrum shape is used for the seismic performance evaluation of structures and equipment. In this study, a generalized response spectrum shape is proposed for seismic performance evaluation of structures and equipment for nuclear power plants. The proposed response spectrum shape reflects the characteristics of earthquake motion in Korea through earthquake hazard analysis, and it can be applied to structures and equipment at various locations.
The seismic damage of non-structural components, such as communication facilities, causes direct economic losses as well as indirect losses which result from social chaos occurring with downtime of communication and financial management network systems. The current Korean seismic code, KBC2009, prescribes the design criteria and requirements of non-structural components based on their elastic response. However, it is difficult for KBC to reflect the dynamic characteristics of structures where non-structural components exist. In this study, both linear and nonlinear time history analyses of structures with various analysis parameters were carried out and floor acceleration spectra obtained from analyses were compared with both ground acceleration spectra used for input records of the analyses and the design floor acceleration spectrum proposed by National Radio Research Agency. Also, this study investigates to find out the influence of structural dynamic characteristics on the floor acceleration spectra. The analysis results show that the acceleration amplification is observed due to the resonance phenomenon and such amplification increases with the increase of building heights and with the decrease of structure’s energy dissipation capacities.
최대지반가속도(PGA : Peak Ground Acceleration)는 지진파의 최대값을 나타내는 매개변수(Parameter)이며 주로 지진파의 강도를 나타낸다. PGA가 동일하더라도 지진파에 따라 다른 동적특성을 가질 수 있고 구조물에 미치는 영향도 다를 수 있다. 따라서 PGA만으로 구조물에 미치는 지진의 특성을 평가하는 것은 바람직하지 못하다. 본 연구에서는 구조물의 비탄성 지진응답해석을 위하여 단자유도(Single Degree Of Freedom) 구조물의 시간이력해석 수행하였으며, 수치해석모델은 완전 탄소성(Perfect Elasto-Plastic)으로 가정하였다. 검토한 입력 지진파는 El Centro NS(1940)의 값을 증감한 지진파를 포함한 실측지진파, 인공지진파를 사용하였다. 이와 같은 수치해석을 통하여 PGA가 동일한 인공지진파들에 대해 비탄성 지진응답해석을 수행하고, 각 지진파에 대하여 변위연성도와 누적소산에너지를 비교하였다. 그 결과 동일한 PGA를 가지더라도 지진파에 따라 서로 다른 응답을 확인할 수 있었다. 따라서 지진의 특성뿐 아니라 구조물의 특성을 반영할 수 있는 지표가 필요할 것으로 판단된다. 구조물의 비탄성 지진응답을 대표할 수 있는 SI(Spectrum Intensity)는 속도응답스펙트럼의 일정구간에 대한 적분을 통하여 얻을 수 있다. 이러한 SI와 변위연성도 및 누적소산에너지의 상관관계 분석을 통하여 구조물의 지진에 대한 비탄성응답의 대표값으로 SI가 적합하다는 것을 확인할 수 있다.
구조물의 지진취약도 분석을 위해서는 평가용 지반응답스펙트럼의 선택이 중요한 영향을 미친다. 본 연구에서는 기존의 설계응답스펙트럼을 이용하여 평가된 전력설비에 대하여 등재해도 스펙트럼을 이용하여 취약도 변수를 치환하는 방법을 제시하였다. 제시된 방법을 이용하여 기존의 전력설비를 대상으로 도출된 고신뢰도저파손확률값(HCLPF)을 비교하였으며, 최종적으로 지진재해도 곡선을 이용하여 전력설비에 대한 정량적 지진위험도를 도출하였다. 결과적으로 설계응답스펙트럼을 이용한 지진위험도 평가는 전력설비의 지진위험도를 보수적으로 판단할 수 있는 것으로 평가되었다.
최근 들어 구조물의 내진성능평가법으로서 간편법인 역량스펙트럼법이 건축물을 비롯한 교량분야에도 활용되고 있다. 현재까지의 연구는 대부분 대칭성을 갖는 정형화된 형상의 교량을 대상으로 하는 연구가 진행되어 왔다. 이 논문에서는 역량스펙트럼법을 비정형 곡선교에 적용시켰을 때의 실용성을 검토하였다. 이를 위해 3경간 연속 곡선교의 비탄성 내진성능을 역량스펙트럼법과 시간이력해석법으로 평가하였다. 곡선교의 응답은 단순 3경간 대칭형 직선교의 응답과 비교하고, 곡선교의 원호각의 정도에 따른 비탄성변위응답의 변화를 분석하였다. 역량스펙트럼법에 의한 평가결과는 비선형 시간이력해석법에 의한 결과와 비교하였다. 입력운동으로 사용한 지반 운동은 실제 기록 지진 중에서 선별된 El Centro지진과 Kobe지진이다. 해석결과, 역량스펙트럼법이 시간이력해석방법에 비하여 대체적으로 변위응답을 크게 산출하고 있는 것으로 확인되었다. 역량스펙트럼법에 의한 해석결과로 얻어진 직선교에 대한 변위 응답 값은 시간이력해석결과와 대체적으로 일치하고 있다. 하지만 곡선교의 원호각이 커질수록 교각의 비탄성 변위는 직선교의 비탄성 변위와 비교하였을 때 그 차이가 증가되는 것으로 확인되었다.
최근 수행된 우리나라 원전 부지에 대한 지진재해도 해석 결과 작성된 등재해도 스펙트럼에서 고진동수 성분의 지진동이 매우 우세하게 나타나고 있다. 일반적으로 지진취약도 해석에서는 설계 스펙트럼에 내재된 보수성을 평가하기 위해 스펙트럼 형상계수가 사용된다. 본 연구에서는 입력지반운동 스펙트럼의 형상이 변화함에 따른 층응답스펙트럼의 형상 변화를 분석하였다. 이때 입력 스펙트럼으로부터 직접 층응답스펙트럼을 작성할 수 있는 직접법을 사용하였다. 본 연구 결과 건물 내부에 설치된 기기의 취약도해석에서는 입력스펙트럼에 내재된 보수성을 구조물의 고유진동수에 대한 스펙트럼 형상계수가 아닌 기기의 고유진동수에 따른 층응답스펙트럼 형상계수로 고려하는 것이 정확한 취약도해석 결과를 주는 것으로 나타났다.
본 연구는 지진계측시스템이 설치되지 않은 중소형 교량의 지진손상 수준을 평가하기 위하여 대상 중소형 교량 인근에 위치한 지진관측소의 지진관측 데이터를 이용하여 대상 교량위치에서의 지반응답스펙트럼을 추정하기 위한 알고리즘을 제시하였다. 일반적으로 중소형 교량의 내진설계 및 성능평가는 동적해석법 중 응답스펙트럼해석법이 가장 널리 활용되고 있으므로 대상 중소형 교량에 대한 평가 지진력으로 지반응답스펙트럼을 적용할 수 있는 알고리즘을 제시하였으며, 제안된 알고리즘을 이용한 프로그램 알고리즘도 제안하고 제안된 알고리즘을 통하여 실제 지진계측데이터를 이용하여 특정 위치에서의 지반응답스펙트럼 추정 예를 나타내었다.
This study presented the seismic performance of weir structures with infinite foundations subjected to seismic ground motions, rather than finite soil foundation to avoid the reflection of seismic wave propagation at the mesh boundaries. The analytical model of weir structures was developed in ABAQUS platform and then the seismic performance of concrete weir structure was evaluated through design response spectrum (KBC 2009). It was revealed that the maximum stresses obtained from infinite models was significantly increased, in comparison to the finite models.
교량 건설에 있어서 사용 재료의 품질 개발과 새로운 구조 형식을 개발하는 기술이 지속적으로 발달되어져 왔으며, 현재는 성능 향상 및 재료비 절감 등을 이유로 다양한 중공식 교각이 개발되고 있다. 이러한 중공식 교각은 단면 형상에 따라 사각단면, 원형단면 등으로 나눌 수 있으며, 제작 기술에 따라 중공 RC 교각, 중공 CFT 교각 등으로 세분화할 수 있다. 현재까지는 중공 사각형 RC 교각이 고교각 건설에 주로 이용되고 있는 실정이다.
중공 교각을 사용하는 주된 이유는 사용 재료의 절감을 통한 경제성 확보 및 같은 양의 재료로 유리한 단면상수를 가진 교각 단면을 만들 수 있으며, 교각의 중공부에 의한 교각의 자중을 감소로 인하여, 교각의 질량이 줄어듦으로써, 지진 하중에 대한 응답을 줄일 수 있기 때문이다.
이에 본 연구에서는 중공식 기둥의 한 종류로 선행 연구자들에 의해 개발된 내부 구속 중공 CFT 기둥을 교량의 하부 구조로 적용하여, 응답스펙트럼해석을 이용한 교각의 내진 성능을 평가를 수행하였다.
본 연구에서의 매개변수는 내부 구속 중공 CFT교각의 중공비이다. 기존 중실교각대비 질량저감 효과를 고려하기 위하여, 중공비는 0.7, 0.8, 0.9를 각각 선정하여, 중공비에 따른 단면을 설계하였다. 축강도 기준, 모멘트 성능 기준, 경제성 기준, 동일단면의 설계를 통하여, 교각의 중공비에 따른 내진 응답을 산출하였으며, 중실기둥대비 성능향상 효과를 도출하였다.