검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Using wearable passive back-support exoskeletons in workplace has attracted attention as devices that support the posture of workers, enhance their physical capabilities, and reduce physical risk factors. Objects: This study aimed to investigate the effect of a wearable passive back-support exoskeleton on the activity of the erector spinae muscles during lifting tasks at various heights. Methods: Twenty healthy adult males were selected as subjects. Electromyography (EMG) was used to assess the activity of the erector spinae muscles while performing lifting tasks at three distinct heights (30, 40, and 50 cm), with and without the application of the Wearable Passive Back Support Exoskeleton. EMG data were gathered before and after the application of the orthosis. Results: The use of the Wearable Passive Back Support Exoskeleton resulted in a significant decrease in muscle activity when lifting a 10 kg object from heights of 30 and 40 cm (p < 0.05). Additionally, there was a significant reduction in muscle activity when lifting from a height of 50 cm compared with that at lower heights (p < 0.05). Conclusion: The use of a wearable passive back-support exoskeleton led to a decrease in the activity of the erector spinae muscles during lifting tasks, irrespective of the object's height. Our results suggest that the orthosis we tested may help decrease risk of lower back injuries during lifting.
        4,000원
        2.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Intertidal mud crab (Macrophthalmus japonicus) is an organism with a hard chitinous exoskeleton and has function for an osmotic control in response to the salinity gradient of seawater. Crustacean exoskeletons change in their natural state in response to environmental factors, such as changes in the pH and water temperature, and the presence of pollutant substances and pathogen infection. In this study, the ecotoxicological effects of irgarol exposure and heavy metal distribution were presented by analyzing the surface roughness of the crab exoskeleton. The exoskeleton surface roughness and variation reduced in M. japonicus exposed to irgarol. In addition, it was confirmed that the surface roughness and variation were changed in the field M. japonicus crab according to the distribution of toxic heavy metals (Cd, Pb, Hg) in marine sediments. This change in the surface roughness of the exoskeleton represents a new end-point of the biological response of the crab according to external environmental stressors. This suggests that it may affect the functional aspects of exoskeleton protection, support, and transport. This approach can be utilized as a useful method for monitoring the aquatic environment as an integrated technology of mechanical engineering and biology.
        4,000원
        3.
        2014.10 구독 인증기관·개인회원 무료
        In insect exoskeleton/cuticle, structural cuticular proteins (CPs) and the polysaccharide chitin are the major components of the procuticle. CPs are cross-linked by quinones or quinone methides produced by the laccase2 (Lac2)- mediated oxidation of N-acylcatechols. We reported that two major CPs, TcCPR27 and TcCPR18, belong to the CPR family that contain the RR-2 consensus motif (Rebers & Riddiford), are essential for formation and stabilization of the rigid cuticle of Tribolium castaneum adults. In this study, we characterized and investigated functions of the third most abundant protein, TcCP30, in extracts of elytra. TcCP30 cDNA encodes a protein with 171 amino acid residues containing a putative signal peptide. Unlike TcCPR27 and TcCPR18, TcCP30 mature protein lacks an RR motif, with a very unique amino composition, 36% Glu, 21% His, 20% Arg and 16% Gly. TcCP30 gene is highly expressed right before and after eclosion (in 5 d-old pupae and 0 d-old adults). Immunohistochemical studies revealed that TcCP30 protein was present in rigid cuticle such as elytra and ventral abdomen but not soft cuticle such as hindwings and dorsal abdomen of adult T. castaneum. Injection of dsRNA for TcCP30 into late instar larvae had no affect on larval and pupal growth and development. However, the subsequent pupal-adult molt, more than 50% adults were unable to shed their exuvium and died entrapped in their pupal cuticle. In addition, the resulting adults exhibited wrinkled, warped and split elytra. TcCP30-deficient adults could not fold their hindwings properly because probably due to the malformed elytra. These results indicate that TcCP30 is critical for formation of rigid adult cuticle as well as development and growth of T. castaneum.
        4.
        2014.10 구독 인증기관·개인회원 무료
        Insect cuticle is a complex biocomposite material consisting of three major morphologically distinct layers, the waterproofing envelope, the protein-rich epicuticle and the chitin/protein-rich procuticle. Structural cuticular proteins (CPs) and the polysaccharide chitin are the major components of the exo- and endocuticular layers that comprise the procuticle. During cuticle tanning (sclerotization and pigmentation), CPs are cross-linked by quinones derived from the oxidation of catechols, resulting in hardening of the exoskeleton. However, the factors that lead to synthesis and assembly of cuticular regions with differing mechanical properties are not well understood. To gain a better understanding of the development and differentiation of rigid cuticle, we performed transmission electron microscopic (TEM) analysis of elytral cuticle (highly sclerotized and pigmented forewing) from 2 d-old pupae to 9 d-old adults of the red flour beetle, Tribolium castaneum. In 2-3 d-old pupae, pupal cuticle separated from the underlining epidermal cells (apolysis), and outermost envelope and protein-rich epicuticle begun to form. A numerous horizontal chitinous laminae and vertical pore canals were evident in the procuticle of 4-5 d-old pupae. By one day after adult eclosion, less-compact horizontal chitinous laminae were deposited, followed by block-type cuticular layers with no horizontal laminae were formed by 9 days. These results will lead to a) a better understanding of insect cuticle formation, structure and mechanics, b) the potential for development of novel insect control agents that target cuticle physiology, and c) the production of biomimetic materials with physical properties like those of the insect exoskeleton for use in biomedical or other technological devices. This work was supported by NRF (NRF-2012R1A2A1A01006467).
        5.
        2017.05 KCI 등재 서비스 종료(열람 제한)
        This paper present a novel approach to control the lower body power assistive exoskeleton system of a HEXAR-CR35 aimed at improving a muscular strength. More specifically the control of based on the human intention is crucial of importance to ensure intuitive and dexterous motion with the human. In this contribution, we proposed the detection algorithm of the human intention using the MCRS which are developed to measure the contraction of the muscle with variation of the circumference. The proposed algorithm provides a joint motion of exoskeleton corresponding the relate muscles. The main advantages of the algorithm are its simplicity, computational efficiency to control one joint of the HEXAR-CR35 which are consisted knee-active type exoskeleton (the other joints are consisted with the passive or quasi-passive joints that can be arranged by analyzing of the human joint functions). As a consequence, the motion of exoskeleton is generated according to the gait phase: swing and stance phase which are determined by the foot insole sensors. The experimental evaluation of the proposed algorithm is achieved in walking with the exoskeleton while carrying the external mass in the back side.
        6.
        2017.05 KCI 등재 서비스 종료(열람 제한)
        In this paper, four-bar linkage mechanism for the knee joint is developed which is used in prosthetics. But unlike the prosthetics, the feature of this mechanism is that the instantaneous center of rotation of the four-bar linkages can be moved behind the ground reaction force vector so that it can be passively supported without any external power. In addition, this mechanism is developed similar to the structure of the human knee joint for eliminating the sense of heterogeneity of the wearer. In order to design the mechanism with these two objectives, optimization design process is done using the PIAnO tool and detailed design is carried out through optimized variable values. The developed mechanism is attached to the robot which can assist the hip and ankle joints. In order to verify the operation of the developed knee mechanism, an insole type sensor was attached to the shoes to compare data values before and after wearing the robot. Result data showed that wearer wearing the exoskeleton robot with the knee mechanism was the same value regardless of whether the heavy tool is loaded or not.
        7.
        2015.08 KCI 등재 서비스 종료(열람 제한)
        This paper describes the development of a hand module of NREX (National Rehabilitation Center Robotic Exoskeleton) designed to assist individuals with sustained neurological impairments such as stroke and spinal cord injuries. To construct a simple and lightweight hand module, the robotic hand adopts a mechanism driven by a motor and moved by two four-bar linkages. The motor facilitates the flexion-extension movements of the thumb and the other four fingers simultaneously. Thus, an individual using the robotic hand module can effectively grip and release objects related to daily life activities. The robotic hand module has been designed to cover the range of motion with respect to its link distance. This hand module can be used in therapeutic rehabilitation as well as for daily life assistance. In addition, this hand module can either be mounted on an NREX or used as a standalone module.
        8.
        2013.08 KCI 등재 서비스 종료(열람 제한)
        This paper presents a new concept of a 1-DOF elbow exoskeleton driven by a twisted strings-based actuator. A novel joint actuation mechanism is proposed and its kinematic model is presented along with its experimental evaluation, and guidelines on how to choose the strings suitable for such an exoskeleton are given. We also proposed and experimentally verified a human intention detection method which takes advantage of intrinsic compliance of the mechanism. The study showed that the developed twisted strings-driven elbow exoskeleton is light, compact and have a high payload-to-weight ratio, which suggests that the device can be effectively used in a variety of haptics, teleoperation, and rehabilitation applications.