PURPOSES : The purpose of this study is to evaluate the structural effects of subbase materials and surface layer thickness obtained from different sites.
METHODS : Using a falling weight deflectometer, structural indexes such as SM(r), surface curvature index, base damage index, base curvature index, and AREA, were determined and compared with those of the control section. The back-elastic moduli for each layer were evaluated using the BALM program, and the tensile and compressive strains were analyzed using the KENLAYER program. The damage analysis was conducted to determine both the permanent deformation and fatigue cracking under repeated loading.
RESULTS : Increasing the surface layer can improve the elastic moduli of the construction section and compensate for the inclusion of different percent finer within 5% in the subbase layer.
CONCLUSIONS : The structural effect of adding 5% of 50 m/m aggregate can be compensated for by increasing the thickness of the surface layer.
PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over finegrained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade modelbased comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.