검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        진해만은 우리나라 남해 연안의 주요 어장으로서, 여전히 전체 수산생산량에서 적지 않은 기여를 창출하고 있다. 그러나, 수십 년간 산업개발과 고수온과 같은 환경변화로 인하여 진해만의 해양생태계는 과거와 달라지고 있다. 본 연구는 2005년부터 2022년 까지 진해만 연안 5개 시군구의 수산생산량, 폐기량, 평균영양단계 및 어업균형지수를 분석하였으며, ARIMA 모델을 이용하여 2027년까 지 단기적인 변동 추세를 함께 관찰하였다. 그 결과, 고성지역은 2027년까지 지속적으로 수산생산량이 감소할 것으로 예측되었다. 통영 지역은 이매패류의 부산물 처리가 필요한 것으로 평가된다. 해양생태계 지표의 경우, 통영지역에서는 대형 어류 생산 비중이 회복되고, 어업균형지수가 0 이상을 나타내어 해양생태계 구조가 안정적인 것으로 나타났다. 마지막으로 IPCC의 기후변화 시나리오에 따라 2060 년까지 진해만의 부어성 어종 6종의 생산량 변동 추이를 비교하였으며, 2020년대 초반 2만 ton 부근까지 감소했던 생산량은 2020년대와 2040년대에 4만 ton 부근 가까이 회복한 후, 2060년까지 점진적인 감소 경향을 나타내는 것으로 예측되었다.
        4,000원
        3.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to estimate potential yield (PY) for Korean west coast fisheries using the holistic production method (HPM). HPM involves the use of surplus production models to apply input data of catch and standardized fishing efforts. HPM compared the estimated parameters of the surplus production from four different models: the Fox model, CYP model, ASPIC model, and maximum entropy model. The PY estimates ranged from 174,232 metric tons (mt) using the CYP model to 238,088 mt using the maximum entropy model. The highest coefficient of determination (R2), the lowest root mean square error (RMSE), and the lowest Theil’s U statistic (U) for Korean west coast fisheries were obtained from the maximum entropy model. The maximum entropy model showed relatively better fits of data, indicating that the maximum entropy model is statistically more stable and accurate than other models. The estimate from the maximum entropy model is regarded as a more reasonable estimate of PY. The quality of input data should be improved for the future study of PY to obtain more reliable estimates.
        4,900원
        6.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to estimate optimal harvesting production, fishing efforts, and stock levels of yellow croaker caught by the offshore Stow Net and the offshore Gill Net fisheries using the current value Hamiltonian method and the surplus production model. As analyzing processes, firstly, this study uses the Gavaris general linear model to estimate standardized fishing efforts of yellow croaker caught by the above multiple fisheries. Secondly, this study applies the Clarke·Yoshimoto·Pooley(CY&P) model among the various exponential growth models to estimate intrinsic growth rate(r), environmental carrying capacity(K), and catchability coefficient(q) of yellow croaker which inhabits in offshore area of Korea. Thirdly, the study determines optimal harvesting production, fishing efforts, and stock levels of yellow croaker using the current value Hamiltonian method which is including average landing price of yellow croaker, average unit cost of fishing efforts, and social discount rate based on standard of the Korean Development Institute. Finally, this study tries sensitivity analysis to understand changes in optimal harvesting production, fishing efforts, and stock levels of yellow croaker caused by changes in economic and biological parameters. As results drawn by the current value Hamiltonian model, the optimal harvesting production, fishing efforts, and stock levels of yellow croaker caught by the multiple fisheries were estimated as 19,173 ton, 101,644 horse power, and 146,144 ton respectively. In addition, as results of sensitivity analysis, firstly, if the social discount rate and the average landing price of yellow croaker continuously increase, the optimal harvesting production of yellow croaker increases at decreasing rate and then finally slightly decreases due to decreases in stock levels of yellow croaker. Secondly, if the average unit cost of fishing efforts continuously increases, the optimal fishing efforts of the multiple fisheries decreases, but the optimal stock level of yellow croaker increases. The optimal harvest starts climbing and then continuously decreases due to increases in the average unit cost. Thirdly, when the intrinsic growth rate of yellow croaker increases, the optimal harvest, fishing efforts, and stock level all continuously increase. In conclusion, this study suggests that the optimal harvesting production and fishing efforts were much less than actual harvesting production(35,279 ton) and estimated standardized fishing efforts(175,512 horse power) in 2013. This result implies that yellow croaker has been overfished due to excessive fishing efforts. Efficient management and conservative policy on stock of yellow croaker need to be urgently implemented.
        4,900원
        7.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to examine the applicability of a portfolio approach to the ecosystem-based fisheries management targeting the large purse seine fishery. Most fisheries are targeting multispecies and species are biologically and technically interacted each other. It enables a portfolio approach to be applied to find optimal production of each species through expected returns and risk analyses. Under specific assumptions on the harvest quota by species, efficient risk-return frontiers were generated and they showed a combination of optimal production level. Comparisons between portfolio and actual production provided a useful information for targeting strategy and management. Results also showed the possibility of effective multispecies fisheries management by imposing constraints on each species such as total allowable catch quotas.
        4,200원