검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Plastic products molded by injection molding have become an essential element of our lives. In addition, plastics can replace parts that used to be metal in the past. Plastic molded products used as a part of a mechanical system require high precision. At the same time, the appearance quality of molded products is also an important evaluation factor. The appearance quality of a molded product is affected by injection molding conditions, plastic material fluidity, and the condition of the mold surface. In this study, the cause of the short shot of the dog house, which functions to assemble the plastic tailgate parts for automobiles, was analyzed. In order to solve the short shot problem of the dog house, the root thickness of the dog house, injection molding conditions, and fluidity of plastic materials were experimented. Through the injection molding experiment, it was found that when the dog house root thickness was increased from 0.8mm to 1.2mm, the filling amount of the doghouse part increased by 43% in experiment mold. These results were verified by injection molding analysis.
        4,000원
        3.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the flow analyses were carried out on three kinds of front wing models. The down forces of front wings which influence the stability, cornering at driving were investigated with three models. At model 1, the maximum pressure shown on the main plate of front wing is 3177.539Pa. The maximum pressures at models 2 and 3 are shown to be 3429.677Pa and 3506.494Pa, respectively. The higher the pressure, the more resistance. So, the lower the pressure, the less resistance the model gets. At model 1, the maximum velocity of stream that flows under the front wing was shown to be the smallest among three models. In case of all three models, the pressure at which the air passes through the front wing is high in the upper part of the front wing. Among three models, model 1 is thought to be the most appropriate model to give the effect of the down force while reducing the flow resistance at driving. By utilizing this study result, the flow velocity and pressure are investigated without the flow experiment at driving due to the configuration of automotive front wing, and the flow resistance can be seen.
        4,000원
        4.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the flow analyses were carried out on the electric train models with three kinds of mounting materials installed at the front part of train. By examining the results of flow rate and pressure, It was investigated which type of design should be designed to be more efficient in high-speed operation. The three types of models are set as models a, b and c, and each has its own shape. For all models, the wind speed was set at 110 km/h, the most common driving speed for wide-area electric trains. In the case of the model a, it was good at cutting the wind flow as a round shape when viewed from the top. But from the side, it showed a vortex forming in the upper corner. To the contrary, the model b, which has a wedge-shaped side, could be seen from the top as a result of a vortex. Finally, in the case of model c combined with models a and b, the least vortex, front pressure, and resistance forces were shown by selecting the flow advantages of models a and b. By utilizing this study result, the flow velocity and pressure are investigated without flow experiment by shape of the front part of electric train, and the flow capacity can be seen.
        4,000원
        5.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        난류경계층이 유지되기 위한 에너지 공급은 경계층 내 구조물인 와류들의 상호작용으로 끊임없이 이루어진다. 이러한 난류 유동은 수송분야의 마찰저항 및 해양구조물의 침식 및 진동을 유발하기 때문에 유동 제어를 위한 연구가 활발히 진행되고 있다. 이러한 제어의 극대화를 위해서는 난류 에너지 전달이 어떻게 이루어지는지에 대한 메카니즘 규명이 필수적이고, 이를 위해서는 층류경계층 내 유동현상으로 파악하는 것이 명확하고 용이하다는 장점이 있다. 따라서, 본 연구에서는 층류경계층 내 평판에 반구를 설치하여 역압력구배을 발생시킴으로써 교란된 유동현상의 상호작용을 분석하였다. 즉, 반구를 둘러싼 목걸이 와류와 반구 표면의 유동 박리에 의한 후류영역에서 머리핀 와류가 생성되어 상호 유기적으로 영향을 주고받는다. 이 과정에서 목걸이 와류는 후류영역으로 높은 운동량의 유체를 유입시켜 머리핀 와류의 발생 주파수를 증가시킨다. 반구 전방에 구멍을 뚫어 국부적인 흡입제어로 목걸이 와류의 와도를 감소시킴으로써 그 영향이 완화되는 과정을 유동 가시화 및 열선유속계로 측정하여 정성 및 정량적으로 분석하였다.
        4,000원