검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        1990.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Follicular atresia is a universal and characteristic phenomenon of both non-mammalian and mammalian vertebrates. Generally it is estimated that greater than 99% of follicles become atretic in higher domestic animals and human. The number of selected follicles developing to the preovulatory stage are thus fewer. Follicles can become atretic at any stage of development. The previous studies emphasized on descriptive and retrospect aspects of a limited population of the fully grown preovulatory follicle. The main efforts in ovarian physilogical researches are focused on follicular development culminating in ovulation but recent advances have resulted in a better understanding of atresia. Nowadays, recent studies are concentrated on the induction of atresia in a selected population of follicles and of the associated cellular, endocrine, biochemical and molecular changes. The factors initiating atresia and follicle selections are worthy of investigations. Another intriguing question is whether one can predict when a follicle will become atretic, i.e., what biochemical markers indicate that a follicle is destined for atresia. It is generally agreed that atretic process may vary even in antral follicles at different stages of their differentiations and among species. The dicisive factors are follicular responsiveness and the hormonal milieu. Some generalizations can be made on the basis of experimental induction of atresia. Alteration of the pattern of follicular steroid production is associated with the initiation stage of atretic process. Atresia appears to be a process unfolding gradually and affecting progressively in increasing number of functions and components of the follicle. The oocyte may be the latest to be afflicted in the atretic process. The high steroidogenic activity of atretic follicles lends support to the notion that atresia is not necessarily a degenerative process and that atretic follicles may play an essential role in ovarian physiology. The simultaneous occurence of growth and atretic processes may render the search for regulatory mechanisms involved in atresia difficult extremely. The questions such as how follicles are selected to undergo ovulation rather than atresia or what the mechanism of atresia is remain unanswered. However, the factors regulating or modifying ovarian hormonal milieu for the initiation of follicular growth and maturation or of atresia are being elucidated.
        5,500원
        2.
        2006.06 KCI 등재 서비스 종료(열람 제한)
        포유류 난포의 폐쇄 과정은 매우 정교한 내분비적 조절작용에 의해 일어나며, 이 과정중에 발생하는 난포 내 과립세포의 퇴화는 핵응축 현상을 동반하는 것으로 알려져 있다. 본 연구는 핵응축 현상과 관련하여 돼지 난소 내 폐쇄난포의 과립세포가 퇴화 시 동반되는 세포 사멸이 아포토시스의 과정에 의해서 일어나는지의 여부와 아포토시스 관련 주요 단백질 분해 효소인 캐스파제-3과 연관된 세포 사멸 기전과 관련이 있는지에 대해서 조사하고자 하였다. 돼지 난소로부터 정