검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Overfishing capacity has become a global issue due to over-exploitation of fisheries resources, which result from excessive fishing intensity since the 1980s. In the case of Korea, the fishing effort has been quantified and used as an quantified index of fishing intensity. Fisheries resources of coastal fisheries in the Korean waters of the East Sea tend to decrease productivity due to deterioration in the quality of ecosystem, which result from the excessive overfishing activities according to the development of fishing gear and engine performance of vessels. In order to manage sustainable and reasonable fisheries resources, it is important to understand the fluctuation of biomass and predict the future biomass. Therefore, in this study, we forecasted biomass in the Korean waters of the East Sea for the next two decades (2017~2036) according to the changes in fishing intensity using four fishing effort scenarios;  ,  , 0.5× and 1.5× . For forecasting biomass in the Korean waters of the East Sea, parameters such as exploitable carrying capacity (ECC), intrinsic rate of natural increase (r) and catchability (q) estimated by maximum entropy (ME) model was utilized and logistic function was used. In addition, coefficient of variation (CV) by the Jackknife re-sampling method was used for estimation of coefficient of variation about exploitable carrying capacity (CVECC). As a result, future biomass can be fluctuated below the BPY level when the current level of fishing effort in 2016 maintains. The results of this study are expected to be utilized as useful data to suggest direction of establishment of fisheries resources management plan for sustainable use of fisheries resources in the future.
        4,000원
        2.
        2012.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We developed an age-based spawner-recruit model incorporating environmental variables to forecast stock biomass and recruits of pelagic fish in this study. We applied the model to the Tsushima stock of jack mackerel, which is shared by Korea and Japan. The stock biomass of jack mackerel (Trachurus japonicus) around Korean waters ranged from 141 thousand metric tons (mt) and 728 thousand mt and recruits ranged from 27 thousand mt to 283 thousand mt. We hind-casted the stock biomass to evaluate the model performance and robustness for the period of 1987~2009. It was found that the model has been useful to forecast stock biomass and recruits for the period of the lifespan of fish species. The model is also capable of forecasting the long-term period, assuming a certain climatic regime.
        4,000원