Currently the forest area is 6,370,000 hectare (ha) which occupies 63.7% in Korea. The forest has good functions such as production of forest products, conservation of national land, prevention of disasters, etc. However constructing houses near the forest area make bad situation like illegal waste incineration by resident. So research subject is forest fire caused by waste incineration place including facility. And this study was conducted about statistical analysis and research analysis of the 100 waste incineration places including facilities at the country town. Statistical analysis shows that March is 27% which percentage is the highest number of forest fire in 10 years’ average. The number of forest fire caused by waste incineration is 45 which is the third highest number in the fire statistic. The distance between waste incineration place including facility and forest area is 30m, 40m and 50m. That 40m (36%) is the most common distance from forest area. The types of waste incineration are ground (62%), the temporary facility made with oil drum can (35%) and other made with steel sheet, concrete, etc. The result of this study is that government and local government must conduct the improvement measure to reduce illegal incineration such as waste pickup area made with rain and wind proof type installed near residence, expenses for waste treatment, enlightenment and training, etc. Also considering their age and income are needed for realistic improvement.
Forest waste was interested as biomass to produce new renewable energy among various materials. To find appropriate conditions of the bio-ethanol production, acid hydrolysis and glucose fermentation experiments were conducted under various conditions. The acid-hydrolysis experiment results show that yield of glucose were increased as raise of temperature, acid concentration and reaction time. As a result, the optimal conditions for producing glucose from forest waste was under 110oC, 35%, and 100 min, respectively. The yield of glucose, which was generated from acid-hydrolysis experiment, was 2.419 mg/g·g from softwood and was 1.192 mg/g·g from hardwood. Also, it was investigated that acetic acid was more efficient than sulfuric acid for acid-hydrolysis process.
The physical properties of sidewalk pavement material made by combining rectangular chips with urethane resin were reviewed through both an indoor test and an on-site test. To obtain the chips, forest tree by-products were crushed and then passed through a 10mm sieve. The materials that remained in the 2.36 mm sieve are the above mentioned chips. For the indoor test, the mixing ratios of urethane resin to chips, by mass, were set as 30%, 40%, 50%, 75% and 100%, respectively. Then, the mixture obtained by mixing with forced mixing type mixer was formed in an iron mold. Tests for tensile strength, elasticity and permeability coefficient were performed 7 days after forming. For the on-site test, the cross-section of the sidewalk pavement material consisted of sand filter layer, crushed stone subbase, permeable concrete base and surface layer of the forest tree chip mixture. For the surface layer, the mass ratios of urethane resin to the forest tree chip were determined to be 40%, 60% and 80%, respectively. The physical property test like the one performed in the indoor test and the skid resistance test was performed over 7 days after the completion of trial construction. According to the result of the tests, the tensile strength, GB/SB coefficients and permeability coefficient were 0.1 to 0.7MPa, 15 to 43% and 0.3 to 0.5mm/sec, respectively, depending on the mixing ratio. In addition, the skid resistance coefficient was 75BPN with the mass ratio of the urethane resin to the forest tree chips of 80%. Furthermore, it was found through the on-site test that a pavement surface with excellent surface smoothness could be obtained through the application of a construction method using an electric heat roller. It was also confirmed that the mixing ratio of urethane resin to forest trees chips needed to be 60% or more.