검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to create a new odor analysis technology that combines the separation technology of GC and the measurement of MOS sensors. The detector of the GC system is replaced with the MOS sensor to analyze various odor compounds. Carrier gas also used air in the normal atmosphere through a micro pump. Therefore, it is possible to develop a portable odor analysis device since no additional cylinder is needed. Retention times for H2S, C7H8, and C2H4O analyzed by the combined GC/MOS system were identified as 1.28 minutes, 3.88 minutes and 1.77 minutes, respectively. Measurement reproducibility of odorous RT was very good at less than 1.2 %RSD. Also, the magnitude of the peak as a result of changes in the concentration of each odor showed a linear proportional relationship. Thus, a new method could be proposed to analyze various odorous substances with the combined GC/MOS system.
        4,000원
        3.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There has been growing concern over the emissions of formaldehyde and VOCs from automotive interior materials, as these could have an important impact on the in-vehicle air quality (IVAQ) of automotive vehicles. Odor along with VOCs refers to the automotive interior smell emitted directly or indirectly from any part of an automotive interior, based on human olfactory senses and a comfort evaluation of vehicle quality. The objective of this paper is to compare the odor intensity using GC/MS analysis method and odor sensory test in accordance with ISO 12219-2. For the compounds having low odor threshold value and high VOC concentration, it was found that there was the same tendency in each field of odor whether the instrument analysis method or the odor sensory test method was used.
        4,000원