논문은 GPU를 이용한 무리 짓기에 대한 병렬 알고리즘을 제안한다. 이를 위하여 GPU의 병렬처리 구조로 CUDA를 사용하였으며, 그것의 특성 및 제한 요소들을 분석하였다. 이의 특성 및 제한 요소를 기초로 무리 짓기에서 가장 많은 비용을 요구하는 이웃 에이전트들을 찾는 것을 병렬화 함으로써 성능을 개선하였다. 제안된 알고리즘을 GTX 285상에서 구현하였고, 그것의 성능을 실험적으로 기존의 공간분할 알고리즘과 비교하였다. 비교의 결과는 제안된 알고리즘이 실행 시간 관점에서 최대 9배 정도 우수하다는 것을 보였다.
메쉬 평탄화는 메쉬 표면의 잡음을 제거하는 것으로써 일반적으로 평탄화 필터를 적용하여 수행한다. 하지만 전체 과정이 CPU에서 수행되기 때문에 많은 실행 시간이 걸리는 문제점을 가진다. GPU는 부동소수점 연산에 특화되어 CPU에 비해 빠른 연산이 가능하기 때문에 복잡한 연산을 실시간으로 처리하는 것이 가능하다. 특히 메쉬 평탄화 과정은 메쉬의 각 정점이나 삼각형을 기반으로 같은 연산을 반복하기 때문에 GPU의 병렬 처리에 적합하다. 본 논문에서는 양방향 필터링에 GPU의 병렬 처리를 이용함으로써 메쉬 평탄화의 수행 시간을 줄이는 방법을 제안한다. 먼저 양방향 필터링을 위해 메쉬의 각 정점에 인접하는 삼각형들을 찾고 이들의 법선 벡터의 평균을 계산하여 정점들의 법선 벡터를 구한다. 양방향 필터링으로 각 정점의 새 위치를 계산하고 앞의 과정을 다시 수행하여 정점들의 새 법선 벡터를 계산한다.