Although the history of the game of Go is more than 2,500 years, the theoretical studies of Go are still insufficient. In recent years a lot of studies using Artificial Intelligent (AI) have been conducted, but they do not provide the prominent theoretical reality. We applied traditional Principal Component Analysis (PCA) algorithm to the Go openings, which are the early stage in Go, to analyze them especially focused on the Go game records of the Korean top 10 professional Go players. We firstly analyzed the number of most significant eigenvectors capturing most of variance. Experimental result shows that among the 361 eigenvectors the eight most significant eigenvectors capture most of the variance (96.2%). We secondly used PCA classifier with Euclidean distance to recognize a pro player's opening to a class obtained from the training openings. Result shows that the best average recognition rate of 22% is so much lower than the recognition rates reported in face recognition research.
적어도 2,500년 전에 기원된 바둑은 세상에서 가장 오래된 보드 게임 중의 하나이다. 아직까지 포석 바둑에 대한 이론적 연구는 여전히 미흡하다. 본 연구는 특정 프로기사의 포석을 갖고 훈련용 포석으로부터 얻어낸 클래스로의 인식을 위해 전통적인 선형판별분석 알고리즘을 적용하였다. 상위 10위권 한국 프로기사의 포석을 갖고 클래스-독립 선형판별분석과 클래스-종속 선형판별분석을 수행하였다. 실험 결과 클래스-독립 LDA는 평균 14%의 인식률을, 클래스-종속 LDA는 평균 12%의 인식률을 각각 보였다. 또한 연구 결과 일반적인 상식과 달리 PCA가 LDA보다 더 우월하고, 유클리디언 거리 측정 방식이 결코 LDA보다 뒤지지 않는다는 새로운 사실이 밝혀졌다.
본 논문은 포석 바둑을 위해, 패턴 지식을 근간으로 바둑 용어 지식을 수행할 수 있는 뉴로-퍼지 추론에 대한 실험 결과를 설명하였다. 즉, 포석 시 최선의 착점을 결정하기 위한 뉴로-퍼지 추론 시스템의 구현을 논하였다. 또한 추론 시스템의 성능을 시험하기 위하여 시차 학습(TD(λ) learning) 시스템과의 대결을 벌였다. 대결 결과에 의하면 단순한 뉴로-퍼지 추론 시스템조차 시차 학습 모델과 충분히 대결할 만하며, 뉴로-퍼지 추론 시스템이 실제 바둑 게임에도 적용될 수 있는 잠재력을 보였다.