A combination of a series of epoxy coatings filled with octadecylamine (ODA)-modified graphene oxide (mGO) or commercial exfoliated graphite nanoplatelets (xGnP) was developed to boost the anticorrosion performances of mild steel substrates in acidic and NaCl aqueous solutions. The xGnP and mGO were applied successfully as fillers for the preparation of layer by layer (LBL) xGnP or mGO/epoxy coatings, respectively, which were coated on the clean steel surfaces to form LBLassembled layers. The LBL-assembled xGnP or mGO/epoxy coating-coated steel substrates exhibit excellent anticorrosion performances. The corrosion potentials (Ecorr) of xGnP-1/xGnP-2/3 and mGO-1/mGO-2/3 display at − 193 and − 150 mV, respectively, while Ecorr of the bare steel shows at − 871 mV of immersion in the 3.5 wt% NaCl solution. The most positive Ecorr values are obtained for xGnP-1/2/3 (− 117 mV) and mGO-1/2/3 (− 66 mV), showing the best anticorrosion performances compared to the bare steel (− 404 mV) in 17 wt% HCl solution.
Graphene nanoplatelets (GNPs) have garnered significant attention in the field of thermal management materials due to their unique morphology and remarkable thermal conductive properties. Their impressive thermal properties make them an interesting choice of nanofillers with which to produce multifunctional composite materials and a host of other applications whilst their structural and thermal properties significantly improve their target materials or composites. Therefore, this present study reviewed recent advances in the use of GNPs as nanofillers to enhance the thermal conductivity of various materials or composites. The improved thermal conductivity that GNPs impart in composites is also comprehensively compared and discussed. Therefore, this review may reveal hitherto unknown opportunities and pave the way for the production of materials with enhanced thermal applications including electronics, aerospace devices, batteries, and structural reinforcement.
Platinum (Pt) catalysts dispersed on carbon-based support materials are generally used in the polymer electrolyte membrane (PEM) fuel cells. In this study, commercial graphene nanoplatelets (GNPs), with different surface areas (320, 530, 800 m2 g− 1), were used as catalyst supports in PEM fuel cells. These GNPs were also pyrolyzed under the inert atmosphere, with and without melamine, as the nitrogen (N) source. Various characterizations (Elemental analysis, FTIR, Raman spectroscopy, BET, TEM, HRTEM, SAED, XRD, TGA, ICP-MS, contact angle measurement, CV, ORR, chronoamperometry, EIS, PEM fuel cell performance test) were performed for the detailed analysis of Pt/GNPs. Based on the three-electrode cell system, the lowest electrochemical surface area (ECSA) loss (29.9%), Pt mass activity loss (20.3%) and overall (charge and mass) resistance (42.2 Ω) were obtained with the Pt/M-530 catalyst. According to the in-situ PEM fuel cell performance results, the specific peak power density was recorded as (450 mW mg Pt− 1) for the Pt/R-530 catalyst, which has also the second most hydrophobic catalyst layer surface with the 146.5° ± 1.28° contact angle value. On the heels of Pt/R-530, the two best performances also belong to the Pt/M-530 (391 mW mg Pt− 1) and Pt/P-530 (378 mW mg Pt− 1) catalysts of the same group.
The study presented in the article is focused on use of graphene obtained by novel microwave-enhanced chemical vapor deposition (MECVD) method as a construction material for 3D porous structures—aerogels and sponges. MECVD graphene nanoplatelets-based aerogels were obtained by mixing MECVD graphene nanoplatelets and chitosan, dissolved in 3% acetic acid followed by its freeze drying and carbonization at 800° in inert medium. Surface morphology of aerogels was characterized by SEM. MECVD graphene nanoplatelets-based aerogels are characterized by a porous structure; they are superhydrophobic and possess high sorption capacity with regard to organic liquids of different densities. Polyurethane sponges coated with MECVD graphene can serve as an alternative to aerogels. The process of their obtaining is cheaper and less complicated. They were obtained by facile “dip-coating” method, modifying its surface to increase its hydrophobicity. The resulting sponges are superhydrophobic and superoleophilic, and demonstrate high rate of sorption of organic liquids and can be easily regenerated by squeezing. In addition, they can be used as a separating material in conjunction with vacuum system for continuous and selective collection of organic liquids from the surface of water.
Morphological differences in multi-layered graphene flakes or graphene nanoplatelets prepared by oxidative (rGO-NP, reduced graphene oxide-nanoplatelets) and non-oxidative (GIC-NP, graphite intercalation compound-nanoplatelets) routes were investigated with various analytical methods. Both types of NPs have similar specific surface areas but very different structural differences. Therefore, this study proposes an effective and simple method to identify structural differences in graphene-like allotropes. The adsorptive potential peaks of rGO-NP attained by the density functional theory method were found to be more scattered over the basal and non-basal regions than those of GIC-NP. Raman spectra and high resolution TEM images showed more distinctive crystallographic defects in the rGO-NP than in the GIC-NP. Because the R-ratio values of the edge and basal plane of the sample were maintained and relatively similar in the rGO-NP (0.944 for edge & 1.026 for basal), the discrepancy between those values in the GIC-NP were found to be much greater (0.918 for edge & 0.164 for basal). The electrical conductivity results showed a remarkable gap between the rGO-NP and GIC-NP attributed to their inherent morphological and crystallographic properties.
We report a covalent functionalization of graphene nanoparticles (GnPs) employing 2,3,4-Tri-O-acetyl-β-D-xylopyranosyl azide followed by fabrication of an epoxy/functionalized graphene nanocomposite and an evaluation of its thermo-mechanical performance. Successful functionalization of GnP was confirmed via thermal and spectroscopic study. Raman spectroscopy indicated that the functionalization was on the edge of the graphene sheets; the basal plane was not perturbed as a result of the functionalization. The epoxy/functionalized GnP composite system exhibited an increase in flexural modulus (~18%) and glass transition temperature (~10°C) compared to an un-functionalized GnP based epoxy composite.
In this study, in order to improve the thermal and electrical properties of epoxy/graphene nanoplatelets (GNPs), surface modifications of GNPs are conducted using silane coupling agents. Three silane coupling agents, i.e. 2-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane (ETMOS), 3-glycidoxypropyltriethoxysilane (GPTS), and 3-glycidoxypropyltrimethoxysilane (GPTMS), were used. Among theses, GPTMS exhibits the best modification performance for fabricating GNP-incorporated epoxy composites. The effect of the silanization is evaluated using transmission electron microscopy (TEM), scanning electron microscopy, thermogravimetric analysis, and energy dispersive X-ray spectroscopy. The electrical and thermal conductivities are characterized. The epoxy/silanized GNPs exhibits higher thermal and electrical properties than the epoxy/raw GNPs due to the improved dispersion state of the GNPs in the epoxy matrix. The TEM microphotographs and Turbiscan data demonstrate that the silane molecules grafted onto the GNP surface improve the GNP dispersion in the epoxy.
Size-sorted graphene nanoplatelets are highly desired for fundamental research and technological applications of graphene. Here we show a facile approach for fabricating size-sorted graphene oxide (GO) nanoplatelets by a simple centrifugal method using different dispersion solvents. We found that the small-sized GO nanoplatelets were more effectively separated when dispersed in water or dimethylformamide (DMF) than in an alkali aqueous solution. After several iterations of the centrifugation, the sizes of GO in the supernatant solution were mostly several micrometers. We found that the GO area was not strongly correlated with the C-O content of the GO dispersed in water. However, the size-sorted GO nanoplatelets in DMF showed different C-O content, since DMF can reduce GO nanoplatelets during exfoliation and centrifugation processes.