This study aims to estimate the Green-House-Gas emissions from domestic farmed flounder in the southern sea and Jeju-Do, where is mainly produced, by the assessment of energy consumptions and GHG emissions from domestic fish farms for establishing reduce standards of greenhouse gas from a sustainable perspective. It needs to analyze such GHG emission components as feed, electricity, fuel, fixed capital, fish respiration, and liquid oxygen in two locations by 4 stage running water type farm size of small, small and medium, large and medium, large scale. The result showed that the mean GHG emissions were 36.83 kg·CO2/year in the southern sea and 24.33 kg·CO2/year in Jeju-Do, respectively, in the stage of production per fish 1kg at 2 locations and farm size from domestic farmed flounders, and it will give to be useful for policy, planning, and regulation of aquaculture development with establishing GHG reduction standards.
The purpose of the study is to estimate the Green-House-Gas (GHG) emissions from domestic eel farm in the water recirculation system or still-water system by the assessment of energy consumptions and GHG emissions for establishing to reduce standards of GHG from a sustainable perspective. GHG emission components as seeds, feed, fuel, electricity, fixed capital, fish respiration, and others were analysed at the different culture type between water recirculation system and still-water system by 3 stage farm size of small, medium, large scale. The result showed that the mean GHG emission of the eel farm was 18.7kg·CO2 in the stage of production per fish 1kg at different culture type and farm size. Therefore it could be useful for policy, planning, and regulation of aquaculture development with establishing GHG reduction standards.