검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        After flame-retardant treatment by the two different agents, the thermal behaviors of Lyocell fibers are discussed. In this research, H3PO4 and NaCl reduced the degradation rate and increased the char yield of the Lyocell fibers, and also increased the limiting oxygen index with the char yield increased. After treatment, the integral procedure decomposition temperature and the activation energy of Lyocell fibers are significantly increased by various concentration factors. These phenomena were indicated by the dehydration, rearrangement, formation of carbonyl groups, the evolution of carbon monoxide and dioxide, and carbonaceous residue formation. These effects were indicating the slow pathway of flame retardancy for the Lyocell fibers and are attributed to the two different flame-retardant agent treatments.
        4,000원
        2.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To improve the etch rate of Si3N4 thin film, H2SiF6 is added to increase etching rate by more than two times. SiO3H2 is gradually added to obtain a selectivity of 170: 1 at 600 ppm. Moreover, when SiO3H2 is added, the etching rate of the SiO2 thin film increases in proportion to the radius of the wafer. In Si3N4 thin film, there is no difference in the etching rate according to the position. However, in the SiO2 thin film, the etching rate increases in proportion to the radius. At the center of the wafer, the re-growth phenomenon is confirmed at a specific concentration or above. The difference in etch rates of SiO2 thin films and the reason for regrowth at these positions are interpreted as the result of the flow rate of the chemical solution replaced with fresh solution.
        4,000원
        3.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most heavy metals are well-known toxic and carcinogenic agents and when discharged into wastewater represent a serious threat to the human population and the fauna and flora of the receiving water bodies. The present study aims to develop a procedure for Pb(II) removal. The study was based on using powdered activated carbon, which was prepared from walnut shells generated as plant wastes and modified with potassium carbonate or phosphoric acid as chemical agents. The main parameters, such as effect of pH, effect of sorbent dosage, Pb(II) concentrations, and various contact times influence the sorption process. The experimental results were analyzed by using Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich adsorption models. The kinetic study of Pb(II) on activated carbon from walnut shells was performed based on pseudo-first order and pseudo-second order equations. The data indicate that the adsorption kinetics follow the pseudo-second order rate. The procedure was successfully applied for Pb(II) removal from aqueous solutions.
        4,000원
        4.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        술폰화 폴리아릴에테르벤즈이미다졸 공중합체를 K2CO3를 이용한 직접중합법으로 합성하고 인산도핑을 하여 고온운전 연료전지용 고분자전해질 막을 제조하였다. 최적의 전해질 막 제조를 위하여 술폰화도 0~60% 및 도핑을 0.7~5.7의 범위에서 다양한 조성의 전해질 막 제조실험이 수행되었으며, 원자현미경분석 및 열중량분석, 수소 이온 전도도측정 등을 통해 전해질 막의 기본특성들을 평가하였다. 수소 이온 전도도는 도핑율에 따라 증가하는 것으로 나타났으며, 130℃의 비 가습환경에서 측정된 수소 이온 전도도는 도핑을 5.7의 전해질 막에서 최대 7.3×10 -2 S/cm의 값을 나타내었다.
        4,000원
        5.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Crushed peach stone shells were impregnated with H3PO4 of increasing concentrations (30-70%) followed by heat treatment at 773 K for 3 h. Produced carbons (ACs) were characterized by N2 adsorption at 77 K using the BET-equation and the α-method. High surface area microporous ACs were obtained, with enhanced internal pore volume, as function of % H3PO4. Adsorption isotherms from aqueous solution were determined for methylene blue (MB) and p-nitrophenol (PNP), as representatives for dye and phenolics pollutant molecules. Application of the Langmuir model proved the high limiting capacity towards both solute molecules, MB was uptaken in increasing amounts as function of H3PO4 concentration and generated porosity. High removal of PNP was almost the same irrespective of porosity characteristics. Competitive adsorption of H2O molecules on the hydrophilic carbon surface seems to partially reduce the available area to the PNP molecules. Application of the pseudo-second order law described well the fast adsorption (≤ 120 min) at two initial dye concentrations.
        4,000원