As the size of the gaming market continues to grow, game engines like Unity and Unreal are constantly being developed and updated for multi-platform support. In particular, Unity divides the Render Pipeline to be used. Among them, the Universal Render Pipeline (URP) has the advantage of supporting various platforms while improving performance by reducing draw calls and batches at the same quality settings and reducing the load on the CPU and GPU. However, only limited global illumination is supported in the real-time 3D rendering area within URP, such as Baked GI and Enlighten GI, and Enlighten GI will be deprecated after 2024LST, so real-time global illumination is not available in URP, which may reduce the realism and immersion of global illumination in games or applications that use URP. The main objective of this research is to incorporate precomputed spherical harmonics into URP to enable dynamic GI updates in real-time. The approach proposed in this research is to compute the coefficients of spherical harmonics offline and then run them within the URP rendering pipeline, where work exists to effectively simulate dynamic lighting conditions. To demonstrate this, experiments were conducted by changing the rotation and color of the lights, and a comparative analysis was performed to demonstrate the effectiveness of the theory proposed in this work.
Harmonic structure materials are materials with a core–shell structure having a shell with a small grain size and a core with a relatively large grain size. They are in the spotlight because their mechanical properties reportedly feature strength similar to that of a sintered powder with a fine grain size and elongation similar to that of a sintered powder with a coarse grain size at the same time. In this study, the tensile properties, microstructure, and stretchflangeability of harmonic structure SUS304L made using powder metallurgy are investigated to check its suitability for automotive applications. The harmonic powders are made by mechanical milling and sintered using a spark plasma sintering method at 1173 K and a pressure of 50 MPa in a cylindrical die. The sintered powders of SUS304L having harmonic structure (harmonic SUS304L) exhibit excellent tensile properties compared with sintered powders of SUS304L having homogeneous microstructure. In addition, the harmonic SUS304L has excellent stretch-flangeability compared with commercial advanced high-strength steels (AHSSs) at a similar strength grade. Thus, the harmonic SUS304L is more suitable for automotive applications than conventional AHSSs because it exhibits both excellent tensile properties and stretch-flangeability.