Heavy metal ion separation of commercial polymeric membranes is investigated to elucidate the permeation mechanism and possibility on applying treatment of wastewater from various origins. Since wastewater contains significant amount of heavy metal ions, their treatment to recycle or reuse is necessary. Polyamide based commercial membranes are prepared to test their separation performance on single- & multi-component heavy metal aqueous solutions. This study indicates that polymeric membranes can be potential candidate for heavy metal separation.
본 연구에서는 수계 내 포함된 양이온들 중 특히 중금속 이온을 효율적으로 분리할 수 있는 양이온 교환막을 개 발하였다. 기저 고분자로는 sulfonated polyetheretherketone (SPEEK)를 사용하였으며 이에 중금속 이온에 결합력이 강한 킬 레이팅 수지를 파우더링하여 첨가하였다. 또한 양이온 교환막의 성능을 최적화시키기 위해 킬레이팅 수지의 함량 및 SPEEK 의 이온교환용량을 제어하였다. 결과적으로 제조된 양이온 교환막을 막 축전식 탈염 공정(membrane capacitive deionization, MCDI)에 적용한 결과 중금속 이온 제거 효율이 20% 이상 향상됨을 확인할 수 있었다.
Waste paper cup was sulfonated to be used as ion exchanger. Removal characteristic of copper and lead ion by prepared ion exchanger was investigated. The sulfonation was conformed by the high intensity band of SO3H group around 1100~1160cm-1. The synthesized ion exchanger had greater removal ability for copper and lead ion than the original waste paper cup. Ion exchange system reached the final equilibrium plateau within 30min. The maximum removal capacities (qmax) were calculated as 9.79mg/g for copper and 15.95mg/g for lead, respectively. The affinity of lead based on a weight was higher than that of copper. The ion exchange phenomena appeared to follow a typical Freundlich isotherm.
Cation exchange distribution coefficients of poly(dithiocarbamate) were presented for Cd^2+, Cr^3+, and Pb^2+ in HCl. The distribution coefficients were determined by using the batch method. Based on these distribution data, the separation possibilities of the heavy metal ions were discussed.
The distribution coefficients of three heavy metal ions on dithiocarbamate resin were decreased as HCl concentrations were increased. The selective separation of Cr^3+ and Cd^2+ was possible by using 0.1 M HCl in dithiocarbamate resin and the reproducibility test showed that the average absorptivity of resin was 90% in the case of Cd^2+ ion by the column method.
The removal effectiveness of various heavy metal ions in boron-rich containing plants has been studied by means of spectroscopic and pH methods. Treatment of the boron-rich containing sample which was collected from cherry and root of cabbage to heavy metal ions is resulted in that an excellent removal effect shows in the case of large ionic size of heavy metal. Stability constants are depended on the variation of pH.