This paper presents the flow analysis of flow over a cylindrical helical-blade turbine to investigate its optimum performance by varying design parameters. For numerical investigations, shear stress transport (SST) turbulence model is used. This simulation is carried out using commercial code CFX by ANSYS Inc. In this paper, the shape optimization was of turbine blades with NACA0021 performed for the vertical-axis turbine having the cylindrical shape. The influences of blade angle of attack, helical angle, and solidity on each shape are grasped. From of the flow analysis, power coefficient decreased when the helical angle was 20 degrees or more, and no electricity is produced when the solidity of 0.1. As a result of the shape optimization, the cylindrical turbine showed the highest power coefficient of 0.2733 at 3° of the blade angle of attack, 10° of the helical angle, and 0.2 of the solidity at the tip speed ratio of 1.
The objective of this study is to evaluate the structural safety of the spherical-helical turbine for hydro-power. We analyze fluid-structure interaction of the spherical-helical turbine for hydro-power using ANSYS-CFX and Mechanical. The maximum combined stress, deformation and safety factor of the spherical-helical turbine in cases of three types of materials were obtained by fluid-structural analysis. From structural analysis, the maximum value of the equivalent stress occurred at the shaft of the turbine for three material types. In case of a polyethylene turbine blades, the maximum equivalent stress and safety factor were 3.46 MPa and 7.23. Polyethylene turbine blades were evaluated to be safe except of the turbine shaft. Several researches will be performed based on the results of this study and more research and development of technologies are needed in this field.
This is to develop a micro water turbine which makes some power from just a fluid velocity in the water pipe. While power is produced from impulsive force which generated by a high head in the case of existing water turbine, this is to produce a power from rotating force of helical turbine which rotated by fluid velocity in the water pipe. Some results of analysis fluid pattern at turbine blade for design shows that bubble is generated from turbulence surrounding blade and pulsatory motion generated as fluid being blocked and opened by blade due to turbine structure. This two phenomena cause to lower power production efficiency and shorten turbine durability. So this is studied to minimize bubble generation and pulsation for optimizing design of turbine blade. Therefore it is determined that the number of blade is three, geometric form of blade is NACA 4420 and angle of blade is 30 degree. An experiment equipment of water turbine is manufactured on the base of these factors(NACA 4420, angle 30。). It is obtained that power production of turbine increases in proportion to velocity which is changed from 1.7 m/sec to 3.5 m/sec. When fluid velocity is 1.7m/sec the power production of turbine is 355W. Power production increase continuously as increasing the fluid velocity and power is 2kW on 3m/sec of fluid velocity.
The performance of helical hydro turbine in water pipe line depends on the sectional shape of turbine blade, pitch angle of turbine blade, solidity and number of turbine blades, To investigate the effects of these design factors on the performance of helical hydro turbine, flow analysis was carried out by using commercial code ANSYS CFX version 14..5. From CFD analysis we obtained the optimum design factors which were the asymmetric blade shape of NACA4420, the pitch angle of 15 degrees and the solidity of 0.3. These results can be used for the actual design of sphere-shaped helical turbine in water pipe line.