Water electrolysis is a representative technology for tritium enrichment in water. Proton exchange membrane (PEM) water electrolysis has received great attention to replace traditional alkaline water electrolysis which generates concentrated tritiated water containing a large amount of salts. Nafion has been widely used as a polymeric electrolyte for the PEM electrolyzer. However, its low gas barrier property causes explosion, corrosion or degradation of electrolyzer. Furthermore, the traditional polymeric electrolytes have negligible differences in conductivity between hydrogen isotopes. To enhance the tritium separation by water electrolysis, we designed a composite membrane (Nafion/ hexagonal boron nitride (hBN)). The monolayer hBN has a high proton conductivity and gas barrier property, and the hBN can enhance conductivity differences between hydrogen isotopes. We prepared Nafion/hBN composite membranes, and water electrolysis performances and proton/deuterium separation behaviors were investigated.
The mechanical properties and microstructures of hexagonal boron nitride (h-BN)-reinforced cement composites are experimentally studied for three and seven curing days. Various sizes (5, 10, and 18 μm) and concentrations (0.1%, 0.25%, 0.5%, and 1.0%) of h-BN are dispersed by the tip ultrasonication method in water and incorporated into the cement composite. The compressive strength of the h-BN reinforced cements increases by 40.9%, when 0.5 wt% of 18 μm-sized h-BN is added. However, the compressive strength decreases when the 1.0 wt% cement composite is added, owing to the aggregation of the h-BNs in the cement composite. The microstructural characterization of the h-BN-reinforced cement composite indicates that the h-BNs act as bridges connecting the cracks, resulting in improved mechanical properties for the reinforced cement composite.
Hybrid graphene/h-BN model is studied via molecular dynamics simulation to observe the evolution of graphene layer upon heating. Model containing 20,064 atoms is heated up from 50 to 8000 K via Tersoff and Lennard–Jones potentials. Various thermodynamic quantities, structural characteristics, and the occurrence of liquid-like atoms are studied. The Lindemann criterion for 2D case is calculated and used to observe the appearance of liquid-like atoms. The atomic mechanism of structural evolution upon heating is analyzed on the basis of the occurrence/growth of liquid-like atoms, the formation of clusters, the coordination number, and the ring statistics. The liquid-like atoms tend to form clusters and the largest cluster increases slightly in order to form a single largest cluster of liquid-like atoms. The other models such as free-standing graphene, zigzag GNR, and armchair GNR are also presented to have an entire picture about the evolution of graphene upon heating in different models. Note that the largest clusters of free-standing graphene as well as zigzag GNR, and armchair GNR tend to decrease to form a ring-like 2D liquid carbon.
Much attention has been paid to thermally conductive materials for efficient heat dissipation of electronic devices to maintain their functionality and to support lifetime span. Hexagonal boron nitride (h-BN), which has a high thermal conductivity, is one of the most suitable materials for thermally conductive composites. In this study, we synthesize h-BN nanocrystals by pyrolysis of cost-effective precursors, boric acid, and melamine. Through pyrolysis at 900oC and subsequent annealing at 1500oC, h-BN nanoparticles with diameters of ~80 nm are synthesized. We demonstrate that the addition of small amounts of Eu-containing salts during the preparation of melamine borate precursors significantly enhanced the crystallinity of h-BN. In particular, addition of Eu assists the growth of h-BN nanoplatelets with diameters up to ~200 nm. Polymer composites containing both spherical Al2O3 (70 vol%) and Eu-doped h-BN nanoparticles (4 vol%) show an enhanced thermal conductivity (λ ~ 1.72W/mK), which is larger than the thermal conductivity of polymer composites containing spherical Al2O3 (70 vol%) as the sole fillers (λ ~ 1.48W/mK).