검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For metal-free carbocatalysts, heteroatom doping and hierarchically porous structure are the significant factors to improve their catalytic performances. Herein, N-, P-co-doped hierarchically porous carbon fiber (NPC–2–800) was prepared by pyrolyzing bamboo pulp in combination with ( NH4)2HPO4 and activator K2CO3. It was found that ( NH4)2HPO4 not only provides N and P atoms, but also significantly affect the morphology and pore structure of the porous carbon. An appropriate dosage of ( NH4)2HPO4 facilitates the formation of hierarchically porous carbon fiber in NPC-2–800. Whereas, the carbon fragments with only micropores were obtained in absence of ( NH4)2HPO4. The hierarchical porosity and the co-doping of N and P atoms in the NPC-2–800 contribute to its outstanding catalytic performances in the 4-Nitrophenol (4-NP) reduction assisted by NaBH4. The NPC-2–800 exhibits an attractive turnover frequency (TOF) value of 4.29 × 10– 4 mmol mg− 1 min− 1, a low activation energy (Ea) of 24.76 kJ/mol, and an acceptable recyclability for 7 cycles without obvious decrease in activity. Kinetics analyses suggest that the 4-NP reduction proceeds through the Langmuir–Hinshelwood model. In addition, the NPC-2–800 can also efficiently catalyze the 2-NP and 3-NP reduction. Moreover, in the real water body, the NPC-2–800 also showed superior catalytic activity to catalyze 4-NP reduction. This study provides an efficient catalyst for pollutant conversion and elimination as well as guidelines for designing versatile carbon-based catalysts.
        4,300원
        2.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have intended and preparation of hierarchically absorbent materials were covered with a NiMn2O4 and acts as a catalyst for azo dye degradation. The polyaromatic-based (PA) absorbent compounds were initially constructed by bromomethylated aromatic hydrocarbons which undergo self-polymerization in presence of ZnBr as a reagent and cross linker is bromomethyl methyl ether. The absorbent black materials with a 3D network were prepared by direct carbonization and activation of the as-prepared PA. The hydrothermal method was adapted for the preparation of carbon hybrid material C@NiMn2O4 powder's catalytic activity is effective in reducing p-nitrophenol to p-aminophenol and decolorizing carbon-based dyes like methyl orange (MO), methyl yellow (MY), and Congo red (CR) in aqueous media at 25 °C when NaBH4 is added. UV–visible spectroscopy was used to analyze the dyes' breakdown at regular interval.
        4,000원
        3.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-performance carbon materials were prepared via a one-step molten salt carbonization of tobacco waste used as electrode materials for supercapacitors. Carbon material prepared by carbonization for 3 h in molten CaCl2 at 850 °C exhibits hierarchically porous structure and ideal capacitive behavior. In a three-electrode configuration with 1 mol L− 1 H2SO4 aqueous solution, it delivers specific capacitance of 196.5 F g− 1 at 0.2 A g− 1, energy density of 27.2 Wh kg− 1 at 0.2 A g− 1, power density of 983.5 W kg− 1 at 2 A g− 1, and excellent cyclic stability with 94% capacitance retention after 5000 charge–discharge cycles at 1 A g− 1. Moreover, in a symmetrical two-electrode configuration with 6 mol L− 1 KOH aqueous solution, it delivers specific capacitance of 111.1 F g− 1 at 0.2 A g− 1, energy density of 3.8 Wh kg− 1 at 0.2 A g− 1, and power density of 482.0 W kg− 1 at 2 A g− 1. The relationship between hierarchically porous structure and capacitive performance is also discussed.
        4,500원
        4.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Here, a novel nitrogen-doped carbon nano-material (N-CGNM) with hierarchically porous structure was prepared from spent coffee ground for efficient adsorption of organic dyes by a simple one-step carbonization process (the uniform mixture consists of spent coffee ground, urea, and CaCl2 with the ratio of 1:1:1, which was heated to 1000 °C with a rate of 10 °C min− 1 and held at 1000 °C for 90 min in N2 atmosphere to carry out carbonization, activation, and N-doping concurrently). The morphology and structure analysis show that the prepared N-CGNM exhibits hierarchical pore structure, high specific surface area (544 m2/ g), and large numbers of positively charged nitrogen-containing groups. This unique structure and chemical composition endow N-CGNM with an excellent adsorption capacity toward anion Congo red (623.12 ± 21.69 mg/g), which is obviously superior to that (216.47 ± 18.43 mg/g) of untreated spent coffee ground-based carbon nano-materials (CGM). Oppositely, the adsorption capacity of N-CGNM towards cation methylene blue is inferior to that of CGM due to the existence of electrostatic repulsion. These findings show a great guidance for the development of low-cost but efficient selective adsorbent.
        4,300원
        5.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High surface carbon aerogels with hierarchical and tunable pore structure were prepared using ionic liquid as carbon precursor via a simple salt templating method. The as-prepared carbon aerogels were characterized by nitrogen sorption measurement and scanning electron microscopy. Through instant visual observation experiments, it was found that salt eutectics not only serve as solvents, porogens, and templates, but also play an important role of foaming agents in the preparation of carbon aerogels. When the pyrolyzing temperature rises from 800 to 1000°C, the higher temperature deepens the carbonization reaction further to form a nanoporous interconnected fractal structure and increase the contribution of super-micropores and small mesopores and improve the specific surface area and pore volume, while having few effects on the macropores. As the mass ratio of ionic liquid to salt eutectics drops from 55% to 15%, that is, the content of salt eutectics increases, the salt eutectics gradually aggregate from ion pairs, to clusters with minimal free energy, and finally to a continuous salt phase, leading to the formation of micropores, uniform mesopores, and macropores, respectively; these processes cause BET specific surface area initially to increase but subsequently to decrease. With the mass ratio of ionic liquids to salts at 35% and carbonization temperature at 900°C, the specific surface area of the resultant carbon aerogels reached 2309 m2 g–1. By controlling the carbonization temperature and mass ratio of the raw materials, the hierarchically porous architecture of carbon aerogels can be tuned; this advantage will promote their use in the fields of electrodes and adsorption.
        4,000원