In this paper, anchorage behavior of high-strength headed rebar with minimum edge distance was evaluated. The experimental parameters are the compressive strengths of concrete, the strengths and the anchorage lengths of headed rebar. The maximum pullout strengths and final failure modes were evaluated through the experiment.
The maximum bond strength of PCS-coated rebar with ultra high-early strength cement and EVA at polymer-cement ratio of 80%, curing ages of 7-day, and coating thickness of 100㎛ is about 1.32 and 1.38 times respectively, the strength of uncoated rebar and epoxy-coated rebar. It is also high bond strength at coating thicknesses of 75㎛ and 100㎛ compared with 150㎛ and 250㎛. It is apparent in this study that the coating thickness is very important factors to improve the bond strength of PCS-coated rebar to cement concrete.
In the sliding slab track of railway bridge, a lateral support block is used to control the lateral displacement. Therefore, it is important to analyze the behavior of dowel rebar and the lateral support block of the sliding slab track. In this study, high strength concrete and steel rebar was selected to analyze the behavior of dowel rebar and shear behavior of high strength dowel rebar and the lateral support block were compared to the equations developed by Soroushian et al. (1986) and CEB-FIP (2010).
The maximum bond strength of PCS-coated rebar with ultra high-early strength cement and EVA at polymer-cement ratio of 80%, curing ages of 7-day, and coating thickness of 100㎛ is about 1.32 and 1.38 times respectively, the strength of uncoated rebar and epoxy-coated rebar. It is also high bond strength at coating thicknesses of 75㎛ and 100㎛ compared with 150㎛ and 250㎛. It is apparent in this study that the coating thickness is very important factors to improve the bond strength of PCS-coated rebar to cement concrete.
In the sliding slab track of railway bridge, a lateral support block is used to control the lateral displacement. Therefore, it is important to analyze the behavior of dowel rebar and the lateral support block of the sliding slab track. In this study, high strength concrete and steel rebar was selected to analyze the behavior of dowel rebar and shear behavior of high strength dowel rebar and the lateral support block were compared to the equations developed by Soroushian et al. (1986) and CEB-FIP (2010).
이 논문의 목적은 압축강도 130 MPa급의 고강도 강섬유 보강 콘크리트 보의 휨거동 특성을 파악하는데 있다. 부피비 1.0%의 강섬 유와 철근비 0.02 이하의 철근으로 보강된 고강도 강섬유 보강 콘크리트의 휨거동 특성 실험결과를 제시하였다. 일반강도철근과 고강도철근 을 실험 부재에 사용하였다. 강섬유 보강 콘크리트의 압축 및 인장거동 재료 실험과 모델링을 수행하였다. 강섬유 보강 콘크리트의 하중-균열 개구변위 실험결과를 반영하여 가상균열모델에 근거한 역해석을 통해 인장거동모델링을 제시하였다. 실험결과는 강섬유 보강 콘크리트와 고 강도철근의 사용은 균열제어 및 연성 거동에 유리한 것을 나타낸다. 일반강도철근을 사용한 보의 휨강도 실험값에 대한 수치해석에 의한 예측 값의 비는 0.81~1.42를 나타내고, 고강도철근을 사용한 보의 휨강도 실험값에 대한 수치해석에 의한 예측값의 비는 0.92~1.07을 나타낸다. 수 치해석에 의한 휨강도는 실험결과를 합리적으로 예측하고 있는 것으로 판단된다.