This study involved the shape of water jet nozzle to promote blasting ability and an increase of projection distance when cleaning VLBC cargo hold. Furthermore, I researched the effect of pressure, length of reducer, nozzle caliber size and nozzle shape on the nozzle through CFD simulation. Simulation of water jet projection process inside VLBC cargo hold was done in both 2D and 3D environment. Simulation results show installing suitable nozzle can increase the cleaning effect of cargo hold.
In order to obtain spherical fine powder, we have developed a new method of high-pressure water atomization system using swirl water jet with the swirl angle . The effect of nozzle apex angle upon the morphology of atomized powders was investigated. Molten copper was atomized by this method, with rad (swirl water jet) and rad (conical water jet). It was found that the median diameter of atomized powders decreased with decreasing down to 0.35 rad in each , but under θ<0.35 rad, increased abruptly with decreasing for rad, while it was still decreased with decreasing for rad.