A press which has a 20 percent share in machine tools is one of the production facilities. The press has been used to make a hole or to bend metal plates. However, recently hydraulic press is used to reinforce competitiveness of the manufacturing industry. The press by using metal powder makes products without additional process while conventional processing machine makes products after removing unnecessary parts. In this way, large quantity of products can be produced in a short time. Researches to manufacture products by the press have been proceeding after 1970. In this study, structure and displacement analysis for punch used as the component for hydraulic press was investigated and structural stability was identified based on the results
The ever increasing requirements on today's compacts with regard to their geometry and precision call for flexible high-precision and most capable production systems. DORST Technologies has coped with these requirements by developing the new HP series for pressing forces between 1600 kN and 16000 kN and the new HS series for pressing forces between 150 kN and 1200 kN. These fully hydraulic presses featuring upper ram, lower ram, core rod, filler, up to 4 lower tool levels and up to 4 upper tool levels with closed-loop controlled movements. Thanks to latest servo technology and an electronic bus system it is possible to have all movements closed-loop controlled in the desired relation to each other. Thus, today's hydraulic presses provide high stroke rates, low energy consumption and a user-friendly interface. The input of data is carried out via clearly arranged screen masks on a touch-screen. The innovative DORST (Intelligent Program Generator) has been designed to support the set-up staff in preparing and optimizing the toolprogram. The combination of the machine type with the hydraulic unit determines the productivity in consideration of the specific application and the part to be pressed. Thanks to the closed-loop control circuits, DORST hydraulic automatic presses of the latest generation ensure unmatched precision and repeatability - and consequently process reliability - often without necessitating subsequent machining steps.