검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.11 구독 인증기관·개인회원 무료
        The physicochemical similarities of hydrogen isotopes have made their separation a challenging task. Conventional methods such as cryogenic distillation, Girdler sulfide process, chromatography, and thermal cycling absorption have low separation factors and are energy-intensive. To overcome these limitations, research has focused on kinetic quantum sieving (KQS) and chemical affinity quantum sieving (CAQS) effects for selective separation of hydrogen isotopes. Porous materials such as metal-organic frameworks (MOF), covalent organic frameworks (COF), zeolites, carbon, and organic cages have been studied for hydrogen separation. In this study, we focus the enhancement for CAQS to provide the cations due to the chemical affinity between hydrogen isotope and unsaturated sites by cations in zeolite beads. Cation exchanged zeolite beads was synthesized with cobalt, copper, nickel, iron and silver in zeolite 4A beads. Synthesized cation exchanged zeolite was analyzed for the surface area and pore size in N2 and adsorption behaviors of hydrogen isotopes (D2/H2) for various cation exchanged zeolite beads using BET at 77 K. The study predicts the D2/H2 adsorption selectivity based on the results obtained with BET. These hydrogen isotope adsorption results will provide a foundation for future processes for tritium separation.
        2.
        2023.05 구독 인증기관·개인회원 무료
        The separation of hydrogen isotopes is a critical issue in various fields, such as deuterium or tritium production and the treatment of radioactively contaminated water. In this presentation, we describe the pervaporative separation of hydrogen isotopes using proton conductive membranes and underlying separation mechanism. We investigated the H/D separation factors of perfluorosulfonic acid (Nafion) and polybenzimidazole membranes using pervaporation, and found that both membranes exhibited similar separation factors of approximately 1.026. Water permeation flux through the membranes was highly dependent on their thickness and type, and increased with operation temperature. However, the effect of temperature on H/D separation factor was negligible. We also demonstrated the cascade separation of H/D, indicating the potential application of multi-stage operation. We found that surface transport mechanisms such as hydron hopping contributed the most to H/D separation during the pervaporation process of proton conductive membranes.
        3.
        2023.05 구독 인증기관·개인회원 무료
        The physicochemical similarities of hydrogen isotopes have made their separation a challenging task. Conventional methods such as cryogenic distillation, Girdler sulfide process, chromatography, and thermal cycling absorption have low separation factors and are energy-intensive. To overcome these limitations, research has focused on kinetic quantum sieving (KQS) and chemical affinity quantum sieving (CAQS) effects for selective separation of hydrogen isotopes. Porous materials such as metal-organic frameworks (MOF), covalent organic frameworks (COF), zeolites, carbon, and organic cages have been studied for hydrogen separation. This study have the literature review for previous research on D2/H2 adsorption and analyzes the D2/H2 adsorption behaviors of hydrogen isotopes for various zeolite using BET at 77 K. The study predicts the D2/H2 adsorption selectivity based on the results obtained with BET. These hydrogen isotope adsorption fundamentals provide a foundation for future processes for tritium separation.
        4.
        2022.10 구독 인증기관·개인회원 무료
        Water electrolysis is an efficient method to enrich heavy hydrogen isotopes (tritium and deuterium) in the aqueous phase. Although an alkaline water electrolyzer has been commercialized for mass production of hydrogen, such a method requires additional purification steps to remove electrolytes from the final concentrates. On the other hand, proton exchange membrane water electrolysis (PEMWE) does not require additional electrolyte treatment steps, and PEMWE is operated at higher current density compared to the alkaline water electrolysis. In this study, we investigated deuterium and tritium separation from light water by PEMWE. Separation behaviors at the anode and cathode were analyzed, and H/D and H/T separation factors were compared.