본 연구에서는 국내외 저탄소 녹색성장을 위한 대안으로서 수소에너지와 그 이용 기술에 대한 관심이 높아지는 추세에 발맞춰 무탄소 연료인 수소를 LNG 의 주성분인 메탄, 메탄-프로판, 메탄-프로판-에탄 동축류 확산화염 내에 첨가하여 화염형상 및 연소생성물에 미치는 영향을 확인하였다. 상온상압 조건의 확산화염에 수소를 단계적으로 첨가하여 실제 생성되는 연소생성물의 변화 추이를 가스 분석기를 이용하여 실험적으로 관찰하였고 확산화염의 형상은 디지털카메라를 이용하여 단계적으로 관찰 하였다. 실험결과에서 확산화염에 수소를 첨가함에 따라 질소산화물의 생성량이 선형에 가깝게 증가하는 경향을 보였다. 이것은 수소의 상대적으로 높은 단열화염온도와 빠른 연소속도가 Thermal NOx의 생성을 촉진했기 때문이다. 반면 이산화탄소의 생성량은 감소하는 경향이 나타났는데 수소를 첨가함에 따라 메탄, 메탄-프로판, 메탄-에탄-프로판의 혼합 확산화염에 포함되어있는 전체 탄소비율이 줄어들어 이산화탄소의 생성량이 감소한 것이다. 이는 선박에서 LNG-수소의 혼합 연료사용으로 인해 온실가스인 이산화탄소를 저감할 수 있는 하나의 방안으로 고려될 수 있다는 것을 의미한다.
Amorphous agglomerates of carbon nanospheres (CNS) with a diameter range of 10-50 nm were synthesized using the solution combustion method. High-resolution transmission elec-tron microscopy (HRTEM) revealed a densely packed high surface area of SP2-hybridized carbon; however, there were no crystalline structural components, as can be seen from the scanning electron microscopy, HRTEM, X-ray diffraction, Raman spectroscopy, and ther-mal gravimetric analyses. Electrochemical and thermo catalytic decomposition study results show that the material can be used as a potential electrode candidate for the fabrication of energy storage devices and also for the production of free hydrogen if such devices are used in a fluidized bed reactor loaded with the as-prepared CNS as the catalyst bed.
Hydrogen has the very high heating value by comparing with other fuels and its combustion exhausts no carbon. But hydrogen causes the very high adiabatic flame temperature which generates thermal NOx. In this study, two cases of experiments were performed to compare engine characteristics. First and second cases are for only diesel combustion engine and mixed hydrogen diesel engine respectively. To verify the effect of mixed hydrogen-diesel combustion engine, the exhausted gas from modified dual fuel diesel engine was analyzed. In addition, diesel consumption per kWh for each case was estimated to validate its economic feasibility. By mixing hydrogen with 5kW brown(hydrogen-oxygen mixture) gas generator, the amount of CO(carbon mono-oxide) decreased from 330ppm to 210ppm by improving combustion and the amount of NOx increased from 390ppm to 520ppm by higher temperature of combustion chamber. Diesel consumption per kWh decreased from 450cc to 410cc but actually increased until 480cc because of the power of brown gas generator