검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2013.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Melamine has been reported to be responsible for kidney stones and renal failure among infants and children. Con-ventional detection methods, High-Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC), aresensitive enough to detect trace amounts of the contaminant, but they are time consuming, expensive, and labor-intensive. Hyperspectral imaging methods, which combine spectroscopy and imaging, can provide rapid and non-destructive means to assess the quality and safety of agricultural products. In this study, near-infrared hyperspectralreflectance imaging combined with partial least square regression analysis was used to predict melamine particleconcentration in dry milk powder. Melamine particles, with concentration levels ranging from 0.02% to 1% byweight ratio (g/g), were mixed with dry milk powder and used for the experiment. Hyperspectral reflectance imagesin the wavelength range from 992.0nm to 1682.1nm were acquired for the mixtures. Then PLSR models weredeveloped with several preprocessing methods. Optimal wavelength bands were selected from 1454.5nm to 1555.6nm using beta-coefficients from the PLSR model. The best PLSR result for predicting melamine concentration inmilk powder was obtained using a 1st order derivative pretreatment with Rv=0.974, SEP=±0.055%, and F=6.
        4,000원
        2.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 가시광 및 근적외선 초분광 반사광 영상 시스템을 이용하여 배추의 건전종자와 퇴화종자를 선별할 수 있는 기술 개발에 관한 연구를 수행하였다. 초분광 반사광 영상을 이용하여 배추의 건전종자와 퇴화종자를 선별할 수 있는 최적의 반사광 파장 조합을 구명하고 이를 이용하여 퇴화종자를 검출할 수 있는 초분광 영상 알고리즘을 제시하였다. 본 논문의 전체적인 결론을 요약하면 다음과 같다. 가) 배추의 건전종자와 퇴화종자를 구별하기 위해 초분광 반사광 스펙트럼을 이용하여 PLS-DA 모델을 개발하고 성능평가를 수행하였다. Calibration set의 분류 정확도 97.6%이고 test set의 분류 정확도는 96.9% 이었다. 나) 배추의 건전종자와 퇴화종자를 분류하는데 가장 큰 영향을 미치는 파장대는 680 nm로 확인 되었으며, 이는 배추종자가 퇴화하는 과정에서 발생하는 chlorophyll 변화의 영향으로 사료된다. 다) 개발한 PLS-DA모델의 beta coefficient를 적용한 PLS의 영상을 이용하여 건전종자와 퇴화종자를 선별한 결과 분류정확도 96.8%로 육안 및 일반 컬러 카메라로 선별하기 힘든 배추의 퇴화종자 검출이 가능한 것을 확인할 수 있었다.
        4,000원
        3.
        2011.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        초분광영상을 이용하여 방울토마토의 전체 면에서 반사스펙트럼을 획득하였으며 숙도 등급(GN-RD)에 따른 스펙트럼의 차이를 관찰하였다. 방울토마토의 반사스펙트럼에서 클로로필에 의한 675 nm 영역의 흡수가 관찰되었고, 당과 수분의 영향으로 알려진 840 nm, 970 nm 영역에서 흡수가 관찰되었다. 특히 GN에서 RD 등급으로 숙도가 진행될수록 평균 스펙트럼의 경우 반사율이 낮아지는 경향이 관찰되었다. 총 8개의 전처리를 이용하여 전 숙도 등급의 시료에 적용한 PLS 회귀 분석에서 내부품질들 중 경도 예측모델이 가장 우수한 것으로 확인되었다. 이때 전처리는 평균값을 이용한 정규화이었으며 결정계수는 0.876, 그리고 SEP은 1.875 kgf 이었다. 당도의 경우는 최대값을 이용한 정규화에서 결정계수가 0.823과 SEP 0.388oBx로 나타났으며, 산 함량의 경우 최대값을 이용한 정규화에서 0.620의 결정계수와 0.208%의 SEP이 확인되었다. 상품성을 고려한 PK, LR, RD 등급의 시료에서 PLS 회귀 분석을 실시한 결과 내부품질 중 전체의 숙도 등급의 시료를 사용하여 예측한 결과보다는 전체적으로 다소 낮은 예측결과를 확인할 수 있었다. 내부 품질 중 경도에서 가장 높은 예측모델이 확인되었으며, 전처리는 일정 범위를 이용한 정규화이고 0.679의 결정계수와 0.976oBx의 SEP이 확인되었다. 당도는 최대값을 이용한 정규화에서 0.586의 결정계수와 0.546 kgf의 SEP의 결과를 보였으며 산 함량은 Savitzky Golay의 2차 미분에서 0.547의 결정계수와 0.188%의 SEP을 보였다. 본 연구에서는 최근 연구 활용이 시작되고 있는 최신기술인 초분광 반사영상을 이용하여 방울토마토 내부품질인 경도, 당도, 산 함량 예측의 가능성을 확인하였다. 초분광영상은 영상처리를 이용하여 외부의 결함 및 외부 착색도 등도 측정할 수 있으므로 본 연구에서 수행한 내부품질 측정과 융합하여 복합적인 농산물 품질 선별기 개발에 활용할 수 있을 것으로 판단된다.
        4,000원
        4.
        2004.12 KCI 등재 서비스 종료(열람 제한)
        A split-plot designed experiment including four rice varieties and 10 nitrogen levels was conducted in 2003 at the Experimental Farm of Seoul National University, Suwon, Korea. Before heading, hyperspectral canopy reflectance (300-1100nm with 1.55nm step) and nine crop variables such as shoot fresh weight (SFW), leaf area index, leaf dry weight, shoot dry weight, leaf N concentration, shoot N concentration, leaf N density, shoot N density and N nutrition index were measured at 54 and 72 days after transplanting. Grain yield, total number of spikelets, number of filled spikelets and 1000-grain weight were measured at harvest. 14,635 narrow-band NDVIs as combinations of reflectances at wavelength ~lambdal~;and~;~lambda2 were correlated to the nine crop variables. One NDVI with the highest correlation coefficient with a given crop variable was selected as the NDVI of the best fit for this crop variable. As expected, models to predict crop variables before heading using the NDVI of the best fit had higher r2 (>10~%) than those using common broad- band NDVI red or NDVI green. The models with the narrow-band NDVI of the best fit overcame broad- band NDVI saturation at high LAI values as frequently reported. Models using NDVIs of the best fit at booting showed higher predictive capacity for yield and yield component than models using crop variables.