Infectious diseases in domestic animals of carcase were increasing every year. According to the monthly report for infectious disease from Ministry for Food, Agriculture, Forestry and Fisheries, 11,954 heads of cattle, 518,178 heads of pig, 232,850,244 heads of bird were reported in 2011. Infectious diseases of carcase almost spread on a national scale. Dead or emergency preventive carcase are completely treated on bury. Since the treatment of carcase on bury are generating soil, underground water and source water pollution, introduction of new preventive system should be considered. In this study, literature survey and case studies to prevent the spreading of virus for infectious disease and second environmental pollution were investigated. The actual experiments using the existing incineration facilities were also performed to ensure the possibilities of safe treatment of carcase. On the other hand, the moving-type incineration are also being developed and its operation manual will be prepared. Among the investigated incinerators, stoker type incinerator was not suitable for the treatment of carcase, however, other incinerators such as fluidized-bed type incinerator, rotary kiln type incinerator ware shown to be suitable. But even for the stoker type incinerator, if the pre-treatment facilities( grinding, crushing) are installed, it will also be a suitable method. The analytical results for air pollutants(including dioxin) emitted from the final exit were all satisfied to the air pollution emission standards.
The emissions characteristics of particulate matters(PM) according to the types of wastes from industrial waste incinerator of 800 kg/hr treatment capacity were investigated. For this study, the incinerate waste are as follows; waste resin, waste wood, waste urethane, waste gunny, and waste paper. The particulate samples were collected to be emitted in stack and air pollution control(both cyclone and bag filter). In stack, the concentrations of PM were in the range of 2.61 to 26.51 ㎎/S㎥ and the major chemical species were C, Si, Cl, K, Na, Ca in all the wastes. In cyclone fly ash, the mean content of heavy metal were in the order of Fe > Zn > Pb > Cu > Mn > Cr > Ni > Cd > As > Hg and the heavy metal content of waste resin were Zn 34,197.5 mg/kg, Fe 27,587.6 mg/kg, Pb 6,055.8 mg/kg, respectively. In bag filter fly ash, the mean content of heavy metal were in the order of Zn > Pb > Fe > Cu > Mn > Cd > Cr > Ni > As > Hg and the heavy metal content of waste wood were Pb 36,405.2 mg/kg, Fe 15,762.9 mg/kg, Cu 9,989.5 mg/kg, Cd 2,230.1 mg/kg, respectively. Comparing the heavy metal content of both cyclone and bag filter, in cyclone, the Cr, Fe, Ni content were higher than in bag filter and the Cd, Cu, Hg content were lower than in bag filter.