PURPOSES : An automated driving guidance framework was developed for automated vehicles based on cooperation between infrastructure and automated vehicles. The proposed automated driving guidance framework is assumed to function only when an automated vehicle encounters situations in which it cannot safely pass through without cooperation with the infrastructure.
METHODS : A four-step concept of automated driving guidance levels was employed, and the decision criteria, such as moving object, event, and externality, were defined as the criteria for determining the automated driving guidance level. The judgment criteria of each stage and procedure for determining the autonomous driving guidance level were determined based on successive judgments, and the proposed automated driving guidance framework was designed based on an expert survey. The survey was aimed at experts with experience related to automated driving system research or technology development.
RESULTS : The resulting framework shows the steps and criteria for determining whether automated driving guidance is required under a specific situation and what the guidance should be.
CONCLUSIONS : The proposed automated driving guidance framework is designed to function only when an automated vehicle encounters situations in which it cannot safely pass through without cooperation with the infrastructure.
사회기반시설물의 안전성을 효과적으로 평가하고 모니터링하기 위해 무선 스마트 센서가 개발되어 전 세계적으로 연구가 진행되 고 있다. 무선 스마트 센서는 통상 계측 및 임베디드 데이터 연산, 무선 통신이 가능한 공통점을 갖고 있어 기존의 유선 기반 센서가 가진 단점을 극복할 수 있을 것으로 기대되고 있다. 그러나 구조물의 장기 모니터링의 경우 내구성이 충분하지 못해 발생하는 센서 고장이나, 환경적 이유 로 인한 무선 통신이 불안정할 경우 계측 데이터를 가져올 수 없는 문제가 발생할 수 있다. 본 연구에서는 무선 스마트 센서 기반의 네트워크에 서 이와 같은 문제로 센서 노드에 무선 통신으로 접근할 수 없는 경우를 대처하기 위해, 칼만 필터 기반의 데이터 복구를 수행하여 무선 스마트 센서 네트워크의 신뢰성을 향상시키는 기법을 제안한다. 본 논문에서는 무선 스마트 센서의 연산 기능을 활용하여 네트워크 내에서 계측된 가 속도 데이터를 바탕으로 유실된 센서의 가속도 계측 데이터를 추정한다. 개발된 무선 스마트 센서 네트워크 시스템의 성능을 확인하기 위해 단 순보 구조에서 실험을 수행하여 추정된 가속도 응답과 계측 값을 비교하였다.