In this study, the change in the mold opening stroke of important functional parts according to the 20, 50, 80, and 100% increase in the injection speed of a hydraulic 150 ton hydraulic injection molding machine was studied to verify the accuracy of the injection speed and mold opening stroke and the reproducibility of the standard deviation. The null and alternative hypotheses were confirmed by conducting hypothesis verification according to the experimental condition change using the experimental design method.
As the 4th industrial revolution emerges, the implementation of smart factories are essential in the manufacturing industry. However, 80% of small and medium-sized enterprises that have introduced smart factories remain at the basic level. In addition, in root industries such as injection molding, PLC and HMI software are used to implement functions that simply show operation data aggregated by facilities in real time. This has limitations for managers to make decisions related to product production other than viewing data. This study presents a method for upgrading the level of smart factories to suit the reality of small and medium-sized enterprises. By monitoring the data collected from the facility, it is possible to determine whether there is an abnormal situation by proposing an appropriate algorithm for meaningful decision-making, and an alarm sounds when the process is out of control. In this study, the function of HMI has been expanded to check the failure frequency rate, facility time operation rate, average time between failures, and average time between failures based on facility operation signals. For the injection molding industry, an HMI prototype including the extended function proposed in this study was implemented. This is expected to provide a foundation for SMEs that do not have sufficient IT capabilities to advance to the middle level of smart factories without making large investments.
In this paper, to improve the optical quality of aspherical plastic lenses for mobile use, the optimal molding conditions that can minimize the phase difference are derived using injection molding simulation, design of experiments, and machine learning. First, factors affecting the phase difference were derived using the design of the experiment method, and a data set was created using the derived factors, followed by the machine learning process. After predicting the model trained using the generated training data as test data and verifying it with the performance evaluation index, the model with the best predictive performance was the random forest model. Therefore, to derive the optimal molding conditions, random forests were used to predict 10,000 random pieces of data. As a result of applying the derived optimal molding conditions to the injection molding simulation, the phase difference of the lens could be reduced by 8.2%.
In this study, the injection pressure of 31 MPa and clamping force of 1,000 kN toggle electric injection molding machine were used to measure the load transmitted to the frame during injection molding and to use it as the design basis data. In general, the toggle structure is composed of a movable plate, tie bars, crossheads, toggle links, toggle pins, base plates, etc and The material is spherical graphite cast iron(FCD 400). In this study, it was found that there was a 1.3% safety factor by calculating the clamping force in the structure of the five-point toggle link system. In addition, Expected static bottom load, Expected dynamic additional load, Maximum expected additional load, and Maximum weight load were measured using tensile measurements and presented as important basic design data of the assembly.
An injection unit is the important part which guide the melted resine into the mold. Once injection molding is performed, there will be a pressure of 33 MPa built up inside of injection cylinder body. It was confirmed that the crack occurs by internal stress on the 9 mm material when the machine is used for long time. Because the cylinder rod has material thickness of 9~12 mm during manufacturing process on the cylinder body, there would be 3 mm thickness differences. In this experiment, IDEAS, a computer aided structure analysis software, is used to present the optimized design condition. Insert rod with inner diameter of 9 mm was set as a normal and vary 3 mm in x, y axis direction. When the internal pressure of 33 MPa occurs at the injection unit, fix the x and y direction and find out the stress acting only in z axis. It was confirmed that the stress of 45~82 N/mm 2 was built up when the left of cylinder body had been set 9 mm by using a structure analysis. Also, it has been verified the thickness of the material on the left need to be greater and equal than 12 mm to prevent a material crack by an internal stress.
In this paper, the 5 joint toggle link of a injection molding machine is analyzed. Considering toggle link kinematics and frictions at the pin joints, clamping forces for each cross head position are calculated. The maximum clamping force and the install position of a tail-stock are determined by the stiffness of links, plates and tie-bar. The kinematic results of a finite element analysis considering friction and stiffness are compared with measured results
Injection molding of corrosive super engineering plastics and engineering plastics with various fillers is conducted under severe conditions and causes corrosion and wear problems. We have developed boride base cermets, which have excellent corrosion-and wear-resistances, and tried to apply them into plastic molding machine parts. In this paper, the effects of V substitution for Cr on the mechanical properties, corrosion resistance and microstructure of Ni-5.0B-51.0Mo-(17.5-X)Cr-XV (mass%) model cermets were investigated. Both transverse rupture strength (TRS) and hardness increased monotonically with increasing V content and reached 2.94GPa and at 10.0%V, respectively. The improvements of TRS and hardness were attributed to microstructural refinement.