Al-B4C neutron absorbers are currently widely used to maintain the subcriticality of both wet and dry storage facilities of spent nuclear fuel (SNF), thus long-term and high-temperature material integrity of the absorbers has to be guaranteed for the expected operation periods of those facilities. Surface corrosion solely has been the main issue for the absorber performance and safety; however, the possibility of irradiation-assisted degradation has been recently suggested from an investigation on Al-B4C surveillance coupons used in a Korean spent nuclear fuel pool (SFP). Larger radiation damage than expectation was speculated to be induced from 10B(n, α)7Li reactions, which emit about a MeV α-particles and Li ions. In this study, we experimentally emulated the radiation damage accumulated in an Al-B4C neutron absorber utilizing heavy-ion accelerator. The absorber specimens were irradiated with He ions at various estimated system temperatures for a model SNF storage facility (room temperature, 150, 270, and 400°C). Through the in-situ heated ion irradiation, three exponentially increasing level of radiation damages (0.01, 0.1, and 1 dpa or displacement per atom) were achieved to compare differential gas bubble formation at near surface of the absorber, which could cause premature absorber corrosion and subsequential 10B loss in an SNF storage system. An extremely high radiation damage (10 dpa), which is unlikely achievable during a dry storage period, was also emulated through high temperature irradiation (350°C) to further test the radiation resistance of the absorber, conservatively. The irradiated specimens were characterized using HR-TEM and the average size and number density of radiation-induced He bubbles were measured from the obtained bright field (BF) TEM micrographs. Measured helium bubble sizes tend to increase with increasing system (or irradiation) temperature while decrease in their number density. Helium bubbles were found from even the lowest radiation damage specimens (0.01 dpa). Bubble coalescence was significant at grain boundaries and the irradiated specimen morphology was particularly similar with the bubble morphology observed at the interface between aluminum alloy matrix and B4C particle of the surveillance coupons. These characterized irradiated specimens will be used for the corrosion test with high-temperature humid gas to further study the irradiation-assisted degradation mechanism of the absorber in dry SNF storage system.
A paradigm shift in the government’s energy policy was reflected in its declaration of early closure of old nuclear plants as well as cancellation of plans for the construction of new plants. To this end, unit 1 of Kori Nuclear Power Plant was permanently shut down and is set for decommission. Based on these changes, the off-site transport of spent fuels from nuclear power plants has become a critical issue. The purpose of this study is to develop an optimized method for transportation of spent fuels from Kori Nuclear Power Plant’s units 1, 2, 3, and 4 to an assumed interim storage facility by simulating the scenarios using the Flexsim software, which is widely used in logistics and manufacturing applications. The results of the simulation suggest that the optimized transport methods may contribute to the development of delivery schedule of spent fuels in the near future. Furthermore, these methods can be applied to decommissioning plan of nuclear power plants.
일본 정부는 사용후핵연료의 중간저장시설의 입지로 아우모리현의 무쯔시를 선정했다. 2000년부터 시작된 유치활동이 5 년만에 결실을 맺은 것이다. 한국은 사용후핵연료를 원자력 발전소 내에 저장하고 있는데 2016년이면 저장한계에 이를 것으로 전망되고 있어 일본의 사례연구는 한국에 시사하는 바가 크다. 한국은 경주에 중, 저준위 방사성 폐기물 저장시설을 성공적으로 유치한 경험이 있어 사용후핵연료의 저장시설을 유치하는 학습경험을 축적한 바 있는데 두 나라의 큰 차이점은 한국은 경쟁적인 주민투표를 통하면서 막대한 지역지원금을 지원한다는 점이고 일본은 주민투표를 시행하지 않고 지방자치 정치의 리더쉽이 문제를 해결하는 방식을 택했다는 점이다. 엄청난 지역지원금이 지원되지 않은 점도 일본의 특징이다. 본 연구가 한국의 사용후핵 연료 저장시설을 유치하는 데 도움이 되었으면 하는 바람이다.