In this study, the whole process of 6xxx series aluminum extruded alloy for high speed train interior and exterior parts are characterized. The mechanical properties, and chemical composition of the case materials were evaluated for the 6063, 6061 and 6N01 alloy profiles and compared to the commercial materials and the evaluation results satisfied the standard. The cast product was extruded using the air slip(AS) casting method and the direct casting(DC) method and these were again heat-treated conditions with T5 or T6. The remarkable point is that the extrusion temperature and pressure of 6061 alloy were somewhat higher than those of other alloys. The reason is that 6061 alloy exhibited brittle fracture due to grain boundary segregation even at the tensile fracture surface and the fact that the product used a billet by the direct casting method instead of air slip one. The mechanical properties were evaluated for the 6063, 6061, 6N01 extruded alloys and the evaluation results were analyzed and satisfied the standard properties.
In this study, the extrusion process of 6xxx series aluminum cast alloy for high speed train interior or exterior parts are developed. For casting, selection of optimum alloying elements, dissolution technology, de-gassing process, production of molds conforming to the conditions of use, development of casting process control technology for various shapes and materials are performed for the development of high-quality, high strength aluminum alloys. The development of more high farmable extruded aluminum casting alloys for interior or exterior materials has been the scope of this study. The extruded die design was performed for the 6063, 6061 and 6N01 alloy profiles and extrusion test was executed. From these results, the extrusion conditions such as extrusion pressure following as billet temperature and materials were carefully examined.
In this study, the whole process of 6xxx series aluminum cast alloy for high speed train interior or exterior parts are characterized. For casting, selection of optimum alloying elements, dissolution technology, de-gassing process, production of molds conforming to the conditions of use, development of casting process control technology for various shapes and materials are performed for the development of high-quality, high strength aluminum alloys. The development of more reliable lightweight aluminum and aluminum alloy for interior or exterior materials has been the scope of this study. The mechanical properties, and chemical composition of the case materials were evaluated for the 6063, 6061 and 6N01 alloy profiles and compared to the commercial materials and the evaluation results satisfied the standard.