This research aims at establishing the application of canvas kite to the fishing gear through the analysis of the lift/drag tests of the kites have been performed in our previous finding. Now that several methodologies were designed to find the most effective triangular model as a buoyancy device applied to the fishing gear. Comparisons of drag/lift were made by installing the model in an installation frame instead of the prototype. Also, we have considered the application of canvas kite to the prototypic fishing gear by calculation using the result of this test. The results obtained from the above approaches are summarized as follows, where attack angle, lift coefficient, maximum lift coefficient and drag coefficient are denoted as B, CL, CLmax and CD respectively. The camber showed a gradual increase with an increase of fluid velocity. There was a big discrepancy in B=20 unlike B=30. Even if the kite retreats along the fluid flow, there is little relationship with the velocity variation. Lifts calculated with the kites were bigger and drags were smaller than those of the calculations with the float only. The kite as the buoyancy device will be very useful when the appropriate applications and the stability are met.
This research aims at establishing the fundamental characteristics of the kite through the analysis of the flow field around various types of kites. The approach of this study were adopted for the analysis; visualization by CFD(computational fluid dynamics). Also, the lift/drag and PIV(particle image velocimetry) tests of kites had been performed in our previous finding. For this situation, models of canvas kite were designed by solidworks(design program) for the CFD test using the same conditions as in the lift/drag tests. And we utilized FloWorks as a CFD analysis program. The results obtained from the above approach are summarized as follows: According to comparison of the measured and analyzed results from mechanical tests, PIV and CFD test, the results of all test were similar. The numerical results of lift-coefficient and drag-coefficient were 5-20% less than those of the tests when attack angle is 10˚, 20˚ and 30˚. In particular, it showed the 20% discrepancy at 40˚. The numerical results of the ratio of drag and lift were 8-13% less than those of the tests at 10˚ and 10% less than those of the tests at 20˚, 30˚ and 40˚. Pressure distribution gradually became stable at 10˚. In particular, the rectangular and triangular types had the centre of the high pressure field towards the leading edge and the inverted triangular type had it towards the trailing edge. The increase of the attack angle resulted in the eddy in order of the rectangular, triangular and inverted triangular type. The magnitude of the eddy followed the same order. The effect of edge-eddy was biggest in the triangular type followed by the rectangular and then the inverted triangular type. The action point of dynamic pressure as a function of the attack angle was close to the rear area of the model with the small attack angle, and with large attack angle, the action point was close to the front part of the model.
This research aims at establishing the fundamental characteristics of the kite through the analysis of the flow field around various types of kites. The approach of this study were adopted for the analysis; visualization by PIV(particle image velocimetry). Also, the lift and drag tests of kites had been performed in our previous finding(Bae et al., 2004a; Bae et al., 2004b). For this situation, models of canvas kite were deployed in the circulating water channel for the PIV test using the same conditions as in the lift and drag tests. The results obtained from the above approach are summarized as follows: Given the rectangular and triangular kites when attack angle is 20˚, vortex by the boundary layer separation was seen in the leading edge and the flow towards the trailing edge was more turbulent. But, the inverted triangular type kite was seen to be stable without any boundary layer separation or turbulence. The increase of the attack angle resulted in the eddy in order of the rectangular, triangular and inverted triangular type. The magnitude of the eddy followed the same order. The effect of edge-eddy was biggest in the triangular type followed by the rectangular and then the inverted triangular type. The kite as the buoyancy device or the opening device will be very useful when the appropriate applications and the stability are met.
종횡비, 다각형 모양에 따른 평판과 범포의 유체역학적 특성을 규명하고자 직사각형, 사다리꼴 모양으로 모형 평판과 범포를 제작하고 회류수조에서 양 · 항력 실험을 수행하였다. 그 결과를 요약하면 다음과 같다. 1. 삼각형 평판의 경우, 종횡비가 1 이하인 모형에서는 38~42˚에서 최대 CL이 1.23~1.32, 1.5 이상인 모형에서는 20~50˚에서 CL이 약 0.85 전후였다. 역삼각형 평판의 경우, 종횡비가 1 이하인 모형에서는 영가가 36~38˚에서 최대 CL이 1.46~1.56, 1.5 이상인 모형에서는 22~26˚에서 1.05~1.21 정도였다. 같은 삼각형 평판 모형에서는 전자의 모형이 후자보다 CL이 작게, 양항비도 작게 나타났다. 2. 삼각형 범포의 경우, 종횡비가 1 이하인 모형에서는 영각 46~48˚에서 최대 CL이 1.67~1.77, 1.5 이상인 모형에서는 20~50˚에서 CL이 약 1.1 전후였다. 역삼각형 범포의 경우, 종횡비가 1 이하인 모형에서는 영각 28~32˚에서 최대 CL이 1.44~1.68, 1.5 이상인 모형에서는 18~24˚에서 10.3~1.18 정도였다. 같은 삼각형 범포 모형에서는 전자의 모형이 후자보다 CL은 크게, 양항비는 작게 나타났다. 3. 모형에서 물의 유체력을 많이 받을 수 있는 곳에서 만곡꼭지점이 만들어지며, 삼각형 모형에서는 종횡비가 클수록, 역삼각형 모형에서는 작을수록 만곡꼭지점의 위치도 컸다. 4. 만곡도는 전 모형에서 종횡비가 클수록 컸으며, 삼각형 모형에서는 영각이 클수록 컸고 역삼각형 모형에서는 작을수록 컸다.
종횡비, 다각형 모양에 따른 평판과 범포의 유체역학적 특성을 규명하고자 직사각형, 사다리꼴 모양으로 모형 평판과 범포를 제작하고 회류수조에서 양 · 항력 실험을 수행하였다. 그 결과를 요약하면 다음과 같다. 1. 직사각형 평판의 경우, 종횡비가 1 이하인 모형에서는 영각 40~42˚에서 최대 CL이 1.46~1.54, 1.5 이상인 모형에서는 20~22˚에서 10.7~1.11 정도였다. 직사각형 범포의 경우, 종횡비가 1 이하인 모형에서는 영각 32~40˚에서 최대 CL이 1.75~1.91, 1.5 이상인 모형에서는 18~22˚에서 1.248~1.40 정도였다. 같은 직사각형 모형에서는 범포가 평판보다 CL은 크게, 양항비는 작게 나타났다. 2. 사다리꼴 범포의 경우, 종횡비가 1.5 이하인 모형에서는 영각 34~44˚에서 최대 CL이 1.65~1.89, 2인 모형에서는 14~48˚에서 CL이 약 1.00 전후였다. 역사다리꼴 범포의 경우, 종횡비가 1.5 이하인 모형에서는 영각 24~36˚에서 최대 CL이 1.57~1.74, 2인 모형에서는 18˚에서 1.21이었다. 같은 사다리꼴 범포 모형에서는 전자의 모형이 후자보다 CL은 조금 크게, 양항비는 작게 나타났다. 3. 모형에서 물의 유체력을 많이 받을 수 있는 곳에서 만곡꼭지점이 만들어지며, 직사각형, 사다리꼴 모형에서는 종횡비가 클수록, 역사다리꼴 모형에서는 종횡비가 클수록, 역사다리꼴 모형에서는 작을수록 만곡꼭지점의 위치도 컸다. 4. 만곡도는 전 모형에서 종횡비가 클수록 컸으며, 직사각형, 사다리꼴 모형에서 영각의 클수록 컸고 직사각형 모형이 사다리꼴 모형보다 컸다.
무부자망은 망구의 전개 및 예망시 중저층에서의 예방수심 조절이 효과적이었지만, 표층~30m에서는 예망이 어렵다는 것이 확인되었다. 따라서 본 연구는 이것을 극복하기 위하여 카이트(Kite)의 적용을 검토한 것으로 무부자 쌍끌이 중층망의 뜸줄에 연결된 대형망목부에 부분적으로 카이트를 부착하여 회류수조에서 모형실험으로 그 전개성능을 비교 조사하고 우리나라 쌍끌이 중층망에 적용 가능성을 검토하였다. 그 결과를 요약하면 다음과 같다. 1. 예망수심은 카이트망이 기준형과 무부자망보다 유속별 예망수심이 모두 상승하였으며, 실제 조업시의 예망속도 4.9knot일때는 기준으로 2개의 카이트를 부착했을 때는 약 20m였고, 4개의 카이트를 부착했을 때는 약 5m였다. 또한, 카이트망의 추와 날개 끝 추의 무게가 증가함에 따른 예망수심의 변화는 거의 없었으며, 발줄의 깊이만 각각 약15m와 10m 침강하였다. 그리고, 아래끌줄의 길이(dL)의 증가에 따른 예망수심의 변화는 없었고, 발줄의 깊이만 약 22m 침강하였다. 2. 유체저항은 유속이 2.0~5.0knot로 증가함에 따라 거의 직선적으로 증가하였으며, 그 증가율은 유속이 증가함에 따라 커지는 경향을 보였다. 또, 카이트망의 유체저항은 무부자망과 기준형에 비해 약 5~10ton 더 컸다. 그리고, 카이트망의 유체저항은 4.0knot를 기준으로 추의 무게가 1.40~3.50ton 으로 증가할 때 약 3ton, 날개끝 추의 무게가 0~1.11ton으로 증가할 때 약 4ton 증가하였으며, 아래끌줄의 길이(dL)가 0~40m로 증가할 때 유체저항은 약 5.5ton 증가하였다. 3. 망고는 4.0knot를 기준으로 카이트의 면적이 2,270mm2(2kite)에서; 4,540mm2(4kite)로 증가할 때 약 10m 증가하였으며, 카이트의 면적이 4,540mm2(4kite)일 때 기준망보다는 약 50m, 무부자망보다는 약 30m 증가하였다. 망폭의 변화는 모든 경우에서 유속의 변화에 따라 5m 내외로 거의 일정하였다. 4. 여과량은 카이트망이 기준형과 무부자망에 비해 유속이 2.0knot일 때는 약 28%, 34% 더 컸으며, 3.0knot일 때는 약 42%, 41%이었고, 4.0knot일 때는 약 62%, 45%이었으며, 5.0knot일 때는 약 74%, 54%로 더 컸다. 각 어구별 적정 예망속도는 뜸이 있는 기준형은 약 3.0knot, 무부자망은 4.0knot이상 이였으며, 카이트망은 5.0knot 이상에서도 가능한 것으로 판단된다. 5. 망구면적당 유체저항의 비는 기준형, 무부자형, 카이트망의 순으로 전개효율은 카이트망이 가장 우수하였으며 다음으로 무부자망, 기준형의 순이었다. 실제 예망속도인 4.0knot를 기준으로 카이트망은 기준형에 비해서는 약50%, 무부자형에 비해서는 약 25%로 더 효율적인 것으로 나타났다.