Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, was successfully launched on 4 Aug. from Cape Canaveral Space Force Station using a Space-X Falcon-9 rocket. Flight dynamics (FD) operational readiness was one of the critical parts to be checked before the flight. To demonstrate FD software’s readiness and enhance the operator’s contingency response capabilities, KPLO FD specialists planned, organized, and conducted four simulations and two rehearsals before the KPLO launch. For the efficiency and integrity of FD simulation and rehearsal, different sets of blind test data were prepared, including the simulated tracking measurements that incorporated dynamical model errors, maneuver execution errors, and other errors associated with a tracking system. This paper presents the simulation and rehearsal results with lessons learned for the KPLO FD operational readiness checkout. As a result, every functionality of FD operation systems is firmly secured based on the operation procedure with an enhancement of contingency operational response capability. After conducting several simulations and rehearsals, KPLO FD specialists were much more confident in the flight teams’ ability to overcome the challenges in a realistic flight and FD software’s reliability in flying the KPLO. Moreover, the results of this work will provide numerous insights to the FD experts willing to prepare deep space flight operations.
This technical paper deals the practical transformation algorithms between several lunar reference frames which will be used for Korea pathfinder lunar orbiter (KPLO) flight operation. Despite of various lunar reference frame definitions already exist, use of a common transformation algorithm while establishing lunar reference frame is very important for all members related to KPLO mission. This is because use of slight different parameters during frame transformation may result significant misleading while reprocessing data based on KPLO flight dynamics. Therefore, details of practical transformation algorithms for the KPLO mission specific lunar reference frames is presented with step by step implementation procedures. Examples of transformation results are also presented to support KPLO flight dynamics data user community which is expected to give practical guidelines while post processing the data as their needs. With this technical paper, common understandings of reference frames that will be used throughout not only the KPLO flight operation but also science data reprocessing can be established. It is expected to eliminate, or at least minimize, unnecessary confusion among all of the KPLO mission members including: Korea Aerospace Research Institute (KARI), National Aeronautics and Space Administration (NASA) as well as other organizations participating in KPLO payload development and operation, or further lunar science community world-wide who are interested in KPLO science data post processing.
The ground tracking support is a critical factor for the navigation performance of spacecraft orbiting around the Moon. Because of the tracking limit of antennas, only a small number of facilities can support lunar missions. Therefore, case studies for various ground tracking support conditions are needed for lunar missions on the stage of preliminary mission analysis. This study analyzes the ground supporting condition effect on orbit determination (OD) of Korea Pathfinder Lunar Orbiter (KPLO) in the lunar orbit. For the assumption of ground support conditions, daily tracking frequency, cut-off angle for low elevation, tracking measurement accuracy, and tracking failure situations were considered. Two antennas of deep space network (DSN) and Korea Deep Space Antenna (KDSA) are utilized for various tracking conditions configuration. For the investigation of the daily tracking frequency effect, three cases (full support, DSN 4 pass/day and KDSA 4 pass/day, and DSN 2 pass/day and KDSA 2 pass/day) are prepared. For the elevation cut-off angle effect, two situations, which are 5 deg and 10 deg, are assumed. Three cases (0%, 30%, and 50% of degradation) were considered for the tracking measurement accuracy effect. Three cases such as no missing, 1-day KDSA missing, and 2-day KDSA missing are assumed for tracking failure effect. For OD, a sequential estimation algorithm was used, and for the OD performance evaluation, position uncertainty, position differences between true and estimated orbits, and orbit overlap precision according to various ground supporting conditions were investigated. Orbit prediction accuracy variations due to ground tracking conditions were also demonstrated. This study provides a guideline for selecting ground tracking support levels and preparing a backup plan for the KPLO lunar mission phase.
This paper presents a kinematic ephemeris generator for Korea Pathfinder Lunar Orbiter (KPLO) and its performance test results. The kinematic ephemeris generator consists of a ground ephemeris compressor and an onboard ephemeris calculator. The ground ephemeris compressor has to compress desired orbit propagation data by using an interpolation method in a ground system. The onboard ephemeris calculator can generate spacecraft ephemeris and the Sun/Moon ephemeris in onboard computer of the KPLO. Among many interpolation methods, polynomial interpolation with uniform node, Chebyshev interpolation, Hermite interpolation are tested for their performances. As a result of the test, it is shown that all the methods have some cases that meet requirements but there are some performance differences. It is also confirmed that, the Chebyshev interpolation shows better performance than other methods for spacecraft ephemeris generation, and the polynomial interpolation with uniform nodes yields good performance for the Sun/Moon ephemeris generation. Based on these results, a Kinematic ephemeris generator is developed for the KPLO mission. Then, the developed ephemeris generator can find an approximating function using interpolation method considering the size and accuracy of the data to be transmitted.
In this study, the observational arc-length effect on orbit determination (OD) for the Korea Pathfinder Lunar Orbiter (KPLO) in the Earth-Moon Transfer phase was investigated. For the OD, we employed a sequential estimation using the extended Kalman filter and a fixed-point smoother. The mission periods, comprised between the perigee maneuvers (PM) and the lunar orbit insertion (LOI) maneuver in a 3.5 phasing loop of the KPLO, was the primary target. The total period was divided into three phases: launch–PM1, PM1–PM3, and PM3–LOI. The Doppler and range data obtained from three tracking stations [included in the deep space network (DSN) and Korea Deep Space Antenna (KDSA)] were utilized for the OD. Six arc-length cases (24 hrs, 48 hrs, 60 hrs, 3 days, 4 days, and 5 days) were considered for the arc-length effect investigation. In order to evaluate the OD accuracy, we analyzed the position uncertainties, the precision of orbit overlaps, and the position differences between true and estimated trajectories. The maximum performance of 3-day OD approach was observed in the case of stable flight dynamics operations and robust navigation capability. This study provides a guideline for the flight dynamics operations of the KPLO in the trans-lunar phase.
The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon’s gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.