검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The reliability of traffic volume estimates based on location intelligence data (LID) is evaluated using various statistical techniques. There are several methods for determining statistical significance or relationships between different database sets. We propose a method that best represents the statistical difference between actual LID-based traffic volume estimates and the VDS values (i.e., true values) for the same road segment. METHODS : A total of 2,496 datasets aggregated for 1-h LID and VDS data were subjected to various statistical analyses to evaluate the consistency of the two datasets. The VDS data were defined as the true values for comparison. Four different statistical techniques (procrutes, 2-sample t-test, paired-sample t-test, and model performance rating scale) were applied. RESULTS : In cases where there is a specific pattern (e.g., traffic volume distribution considering peak and off-peak times), distribution tests such as Procrustes or Kolmogorov-Smirnov are useful because not only the prediction accuracy but also the similarity of the data distribution shape is important. CONCLUSIONS : The findings of this study provide important insight into the reliability of LID-based traffic volume estimation. To evaluate the reliability between the two groups, a paired-sample t-test was considered more appropriate than the performance evaluation measure of the machine-learning model. However, it is important to set the acceptance criteria necessary to statistically determine whether the difference between the two groups in the paired-sample t-test varies according to the given problem.
        4,000원
        2.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aims to investigate the reliability of the real-time estimation of intersection traffic volumes based on the integration of location intelligence data and smart intersection data. METHODS : Location intelligence data (LID) and smart intersection data were obtained at eight intersections in Inju-daero, Incheon. The two datasets were then integrated to estimate traffic volumes for intersections in the shadow section, where traffic information was not expected to be obtained. The traffic estimation accuracy was evaluated using the total traffic, approach traffic, and turning movement volumes at the intersections. The estimated traffic was compared with the actual traffic volumes in the smart intersection data to validate the reliability of traffic estimation. RESULTS : The average traffic estimation error for the total intersection volume was approximately 4.5% for the five intersections in the shadow section. The estimation errors for the approach volumes (less than 5%) were also consistently low, except from 12 pm to 1 pm. CONCLUSIONS : The findings of this study suggest that location intelligence data can be combined with smart intersection data to estimate real-time traffic for shadow sections on roadways. This could enable a cost-effective cooperative intelligent transport system (C-ITS) when the municipal budget is limited, ultimately leading to the sustainable operation of C-ITS.
        4,000원