검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2018.11 구독 인증기관·개인회원 무료
        Mitochondria is energy generating organelle. It synthesizes ATP, which is the essential energy source of many cellular processes. During producing energy, some redox centres leak electrons to oxygen and it is contributory to the reactive oxygen species. Besides, mitochondria have significant functions in metabolism, calcium homeostasis, and fatty acid oxidation. Also mitochondria has importance to the breakdown of the ovarian follicles and could be factor determining oocyte of quality adversely. Increasing evidence shows that the number of mitochondria affect oocyte of developmental competence and maturation detrimentally during aging. Oocyte is the mitochondria-rich cell and enable the organelle to have competence for fertilization and early embryonic development. Occurrence of blastomere depends on distribution change of mitochondria which present in the egg. Lonicera caerulea treatment inhibited ovarian mitochondrial oxidative damage by suppressing mitochondrial reactive oxygen species (mROS) generation, decreasing apoptosis, controlling disintegration of mitochondrial membrane potential and conserving respiratory chain complex activities. The purpose of this study is to identify if mouse accepting treatment with L. caerulea could counter age-induced sterility and ovarian mitochondrial OS in a model organism of ovarian ageing.
        2.
        2018.11 구독 인증기관·개인회원 무료
        Mammalian oocytes are sensitive to psychological stress at each period of follicular development. Especially, thermal stress interfere with reproductive condition by inducing formation of reactive oxygen species (ROS) and oxidative stress (OS). ROS lead to oocyte apoptosis, weakening oocyte quality and lowering the fertilization rate. As a result, the pregnancy rate is lowered, leading to infertility. Thermal stress also seems to influence zygotes through physiological changes in the maternal environment surrounding them. Loss of developmental competence suggests hyperthermia-induced oxidative stress in embryos. Interest in organic Lonicera caerulea berries has increased in recent years. They are abundant in various health-improving materials. Berries that found from natural products can be as free as possible from the bioactive toxicity of the active ingredient without side effects, and it can be a big advantage because it can work. Mammalian oocytes are arrested at the first meiotic prophase stage and get their meiotic competence to produce offspring during the development of follicle. A series of nuclear and cytoplasmic maturations are involved in this process and these vary in temperature sensitivity. Our study demonstrated that L. caerulea can relieve the negative effects of maternal hyperthermia by reducing ROS level at the developmental stage.
        3.
        2016.10 서비스 종료(열람 제한)
        Background : Haskap berries commonly refer to fruits of Lonicera caerulea L., recognized by the Japanese aborigines as the “The elixir of life.”. Due to their recent arrival on the North American market, haskap berries have not yet been positioned among other berries and compared in terms of their phytochemical content. And haskap berries have higher ascorbic acid and anthocyanin content than other berries known for their health-promoting benefits, such as blueberries. However, no study has reported on the antioxidant and anti-cancer activity of Lonicera caerulea stem. The purpose of this study is to present the current research on the chemical content, antioxidant and anti-cancer activities of Lonicera caerulea stem. Methods and Results : The stem of Lonicera caerulea L. ware dried in the shade at room temperature and extracted with 100% methanol. The extract was suspended in deionized water and partitioned sequentially with n-hexane, chloroform, ethyl-acetate and butanol (water saturated BuOH) fractions. Antioxidant activities were measured by determination of antioxidants, DPPH (2,2-diphenyl-1-picrylhydrazyl). Cell viability was determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. All cell lines were purchased from the Korean Cell Line Bank (Seoul, Korea). All results were performed with three replications were processed statistically. By DPPH assay, the Lonicera caerulea L. the highest activity was obtained from the ethyl-acetate fraction (IC50=15.46 ㎍/㎖). By MTT assay, the chloroform fraction showed a significant growth inhibiting effect on MCF-7 (Human breast cancer, IC50=225.91 ㎍/㎖), COLO 205 (Human colon cancer, IC50=179.55 ㎍/㎖), but on AGS (Human stomach cancer) and other fractions it did not show effect. Conclusion : We demonstrated that Lonicera caerulea L. stem extract and fractions has antioxidant and antiproliferation activity in vitro. Further studies should identify the active constituents in Lonicera caerulea L stem to evaluate the potential in vitro antioxidant and antiproliferation activities of the extract.