검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study intends to analyze physical and chemical changes using Thermo-Gravimetric Analysis (TGA) of MGO-bioethanol mixed fuel oil. We will analyze the thermal stability and state changes of MGO-Bioethanol mixed fuel oil and conduct and utilize various basic experiments on its applicability as ship fuel oil in the future and eco-friendly alternative fuels. The physical and chemical conditions set through this experiment were set through non-isothermal heating at about 20°C to 933°C, and the heating rate was 100°C/min, the measurement time was 10 minutes, and the amount of samples in each mixed fuel oil was about 18mg-24mg. In the range of pyrolysis temperatures from 235.241°C to 253.320°C, the weight of BE0 was 30.992%, BE10 was 36.199.%, BE20 was 35.879%, and BE30 was 35.725%, indicating that the pyrolysis temperature and weight tended to increase as the bioethanol content increased.
        4,000원
        3.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study intends to use the possibility of an eco-friendly alternative fuel to be applied to ships as a sample manufacturing method for ship MGO and bioethanol mixed fuel oil as basic evidence. The components of the manufactured mixed fuel oil were analyzed using the ISO-8217 standard testing method. As a result of analysis showed that in the lower calorific value decreased to 43030J/g at BE0 fuel and 37010J/g at BE30 fuel. The high calorific value decreased to 46.065MJ/kg at BE0 fuel and 39.460MJ/kg at BE30 fuel. The density decreased to 840.8kg/m3 at BE0 fuel and 837.0kg/m3 at BE30 fuel. In the case of flash point it was 67.5℃ when BE0, and decreased to less than 40.0℃ when BE10 to BE30. Finally the Kinematic Viscosity was 3.011mm2/s at BE0 and decreased to 2.502mm2/s at BE30.
        4,000원