검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2012.12 구독 인증기관 무료, 개인회원 유료
        The technique of SCNT is now well established but still remains inefficient. The in vitro development of SCNT embryos is dependent upon numerous factors including the recipient cytoplast and karyoplast. Above all, the metaphase of the second meiotic division (MII) oocytes have typically become the recipient of choice. Generally high level of MPF present in MII oocytes induces the transferred nucleus to enter mitotic division precociously and causes NEBD and PCC, which may be the critical role for nuclear reprogramming. In the present study we investigated the in vitro development and pregnancy of White-Hanwoo SCNT embryos treated with caffeine (a protein kinase phosphatase inhibitor). As results, the treatment of 10 mM caffeine for 6 h significantly increased MPF activity in bovine oocytes but does not affect the developmental competence to the blastocyst stage in bovine SCNT embryos. However, a significant increase in the mean cell number of blastocysts and the frequency of pregnant on 150 days of White-Hanwoo SCNT embryos produced using caffeine treated cytoplasts was observed. These results indicated that the recipient cytoplast treated with caffeine for a short period prior to reconstruction of SCNT embryos is able to increase the frequency of pregnancy in cow.
        4,000원
        2.
        2009.12 구독 인증기관 무료, 개인회원 유료
        We attempted to control the maturation promoting factor (MPF) activity and investigated the subsequent reprogramming of bovine somatic cell nuclear transfer (SCNT) embryos. Serum‐starved adult skin fibroblasts were fused to enucleated oocytes treated with 2.5 mM caffeine or 150 μM roscovitine. The MPF activity, nuclear remodeling patterns, chromosome constitutions and development of SCNT embryos were evaluated. Methylated DNA of embryos was detected at various developmental stages. The MPF activity was increased by caffeine treatment or reduced by roscovitine treatment (p<0.05). Blastocyst development was higher in the caffeine‐treated groups (27.6%) than that of the roscovitine‐treated group (8.3%, p<0.05). There was no difference in the apoptotic cell index among the three groups. However, the mean cell number of blastocysts was increased in the caffeine‐treated group (p<0.05). Higher methylation levels were observed in the Day 3 embryos of the roscovitine‐treated group (50.8%), whereas lower methylation levels were noted at Day 5 in the caffeine‐treated group (12.5%, p<0.05). These results reveal that the increase in MPF activity via a caffeine‐treatment creates a more suitable condition for nuclear reprogramming after SCNT.
        4,000원
        3.
        2008.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We attempted to control the maturation promoting factors (MPF) activity and nuclear remodeling of somatic cell nuclear transfer (NT) bovine embryos. Bovine ear skin fibroblasts were fused to enucleated oocytes treated with either 5 mM caffeine for 2.5 h or 0.5 mM vanadate for 0.5 h and activated. The nuclear remodeling type of the reconstituted embryos was evaluated 1.5 h after activation. MPF activity was assessed in enucleated and chemical treated oocytes before the injection of a donor cell. Effect of chemicals on the embryonic development was evaluated with parthenogenetic embryos. MPF activity increased significantly by caffeine treatment, but decreased by vanadate treatment (p<0.05). Caffeine or vanadate had no deleterious effect on the parthenogenetic embryo development. In caffeine treated group, premature chromosome condensation (PCC) was occurred in 72.2% of NT embryos (p<0.05). In contrast, vanadate induced the formation of a pronucleus-like structure (PN) in a high frequency (68.9%, p<0.05) without PCC (NPCC). Blastocyst development of NT embryos increased by treating with caffeine (30.3%), whereas decreased by treating with vanadate (11.4%) compared to control (22.1%, p<0.05). The results indicate that caffeine or vanadate can control of MPF activity and remodeling type of NT embryos, resulting in the increased or decreased in vitro development.
        4,000원