양식장 부표 등과 같은 해상의 소형 장애물을 탐지하고 거리와 방위를 시각화시켜 주는 해상물체탐지시스템은 선체운동으로 인한 오차를 보정하기 위해 3축 짐벌이 장착되어 있지만, 파도 등에 의한 카메라와 해상물체의 상하운동으로 발생하는 거리오차를 보정 하지 못하는 한계가 있다. 이에 본 연구에서는 외부환경에 따른 수면의 움직임으로 발생하는 해상물체탐지시스템의 거리오차를 분석하 고, 이를 평균필터와 이동평균필터로 보정하고자 한다. 가우시안 표준정규분포를 따르는 난수를 이미지 좌표에 가감하여 불규칙파에 의 한 부표의 상승 또는 하강을 재현하였다. 이미지 좌표의 변화에 따른 계산거리, 평균필터와 이동평균필터를 통한 예측거리 그리고 레이저 거리측정기에 의한 실측거리를 비교하였다. phase 1,2에서 불규칙파에 의한 이미지 좌표의 변화로 오차율이 최대 98.5%로 증가하였지만, 이동평균필터를 사용함으로써 오차율은 16.3%로 감소하였다. 오차보정 능력은 평균필터가 더 좋았지만 거리변화에 반응하지 못하는 한계 가 있었다. 따라서 해상물체탐지시스템 거리오차 보정을 위해 이동평균필터를 사용함으로써 실시간 거리변화에 반응하고 오차율을 크게 개선할 수 있을 것으로 판단된다.
자율운항선박이 상용화되어 연안을 항해하기 위해서는 해상의 장애물을 탐지할 수 있어야 한다. 연안에서 가장 많이 볼 수 있 는 장애물 중의 하나는 양식장의 부표이다. 이에 본 연구에서는 YOLO 알고리즘을 이용하여 해상의 부표를 탐지하고, 카메라 영상의 기하 학적 해석을 통해 선박으로부터 떨어진 부표의 거리와 방위를 계산하여 장애물을 시각화하는 해상물체탐지시스템을 개발하였다. 1,224장 의 양식장 부표 사진으로 해양물체탐지모델을 훈련시킨 결과, 모델의 Precision은 89.0 %, Recall은 95.0 % 그리고 F1-score는 92.0 %이었다. 얻 어진 영상좌표를 이용하여 카메라로부터 떨어진 물체의 거리와 방위를 계산하기 위해 카메라 캘리브레이션을 실시하고 해상물체탐지시 스템의 성능을 검증하기 위해 Experiment A, B를 설계하였다. 해상물체탐지시스템의 성능을 검증한 결과 해상물체탐지시스템이 레이더보 다 근거리 탐지 능력이 뛰어나서 레이더와 더불어 항행보조장비로 사용이 가능할 것으로 판단된다.