층상 반무한체에서의 확률론적 완전파형역산을 위한 Markov chain Monte Carlo (MCMC) 모사 기법을 정식화한다. Thin-layer method를 사용하여 조화 수직 하중이 작용하는 층상 반무한체의 지표면에서 추정된 동적 응답과 관측 데이터와의 차이 및 모델 변수 의 사전 정보와의 차이를 최소화하도록 목적함수와 모델 변수의 사후 확률밀도함수를 정의한다. 목적함수의 기울기에 기반하여 MCMC 표본을 제안하기 위한 분포함수와 이를 수락 또는 거절할지 결정하는 수락함수를 결정한다. 기본 진동모드 뿐만이 아니라 고 차 진동모드가 우세한 경우를 포함하여 다양한 층상 반무한체의 전단파 속도 추정에 제안된 MCMC 모사 기법을 적용하고 그 정확성 을 검증한다. 제안된 확률론적 완전파형역산을 위한 MCMC 모사 기법은 층상 반무한체의 전단파 속도와 같은 재료 특성의 확률적 특 성을 추정하는 데 적합함을 확인할 수 있다.
Negative binomial yield model for semiconductor manufacturing consists of two parameters which are the average number of defects per die and the clustering parameter. Estimating the clustering parameter is quite complex because the parameter has not clear
In this paper we propose the method that detects moving objects in autonomous navigation vehicle using LRF sensor data. Object detection and tracking methods are widely used in research area like safe-driving, safe-navigation of the autonomous vehicle. The proposed method consists of three steps: data segmentation, mobility classification and object tracking. In order to make the raw LRF sensor data to be useful, Occupancy grid is generated and the raw data is segmented according to its appearance. For classifying whether the object is moving or static, trajectory patterns are analysed. As the last step, Markov chain Monte Carlo (MCMC) method is used for tracking the object. Experimental results indicate that the proposed method can accurately detect moving objects.