검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2016.07 KCI 등재 서비스 종료(열람 제한)
        In this study, the recycling processes of construction and demolition waste (C&D waste) were analyzed, and its national recycling rate was determined using material flow analysis (MFA). Available statistical data provided by Ministry of Environment and Korea Environment Corporation were used for the MFA study. The collected data were carefully examined and validated by field investigations. System boundary for MFA covered from waste generation from construction sites to final disposal in 2013. The field investigation showed that recycled aggregate is produced through mechanical shredding, separation, and screening processes of C&D waste. The production efficiency (or process yield) was estimated to be approximately 81.2% on average. The foreign materials in the waste accounted for 18.8% by weight. The separated impurities were sent to recycling facilities, incineration facilities, or landfill sites, depending on the physicochemical characteristics. Efficiency of recycling facilities and the statistical data were integrated to estimate the national actual recycling rate, which turned out to be 87.7% in 2013. Approximately 49.1% of the construction-related waste was recycled as recycled aggregate for concrete production and road base layer for asphalt pavement. Based on the result of MFA, there is 9.8% difference between the actual recycling rate in this study and reported recycling rate by national statistics. In the future, more various C&D waste treatment and disposal facilities, along with aggregate recycling facility, should be investigated to verify the actual recycling rate determined by this study. Statistical accuracy should be further refined through additional field investigations. Our findings can be applicable to development of recycling policies and best management practices for C&D waste streams.
        2.
        2016.04 KCI 등재 서비스 종료(열람 제한)
        In this study we conducted a material flow analysis (MFA) of the four major types of waste electrical and electronic equipment (WEEE), namely refrigerators, TV sets, washing machines, and air conditioners, based on the most reliable data available from the Eco-Assurance System, other governmental sources, the literature, a field survey, and interviews. A MFA of six major components, iron, copper, aluminum, plastics, precious metals, and rare metals was also conducted. The estimated total generation of WEEE in 2013 amounted to 401.8 thousand tons, of which 3.8% (or, approximately 5% including printed circuit boards) was exported and 55.0% was recycled. The collection by the formal take-back system occupied 34.6% of the total generation, from which 83.9% was recovered as valuables. The six major components amounted to 299.7 thousand tons, among which 89.8% of iron, 91.4% of copper, 56.0% of aluminum, 27.1% of plastics, 37.1% of precious metals, and 6.2% of rare metals were recovered. A high positive correlation was found between the amount of WEEE flowing into the private recycling business and its economic value. Since the recovery ratio in the private sector was estimated to be much lower, while the potential environmental impact was higher, an optimal strategy was identified to enhance the collection by the public sector. Providing economic incentives should be an effective means to encourage private collection through the formal take-back system.
        3.
        2014.03 KCI 등재 서비스 종료(열람 제한)
        There are many stringent environmental regulations on the management of waste electrical and electronic equipments(WEEE) in most developed countries. WEEE directive aims at increasing collection and recycling rate of WEEE whereas,while the restriction of the use of certain hazardous substances (RoHS) aims at restricting hazardous materials duringthe production of electrical and electronic equipment (EEE). TV housing rear covers consist of small portion of brominatedflame retardants (BFRs). Improper management and disposal of such waste can pose impacts on the environment andhuman health. In Korea, there are very few available statistical data regarding BFRs levels in TVs housing rear covers.In order to provide additional measures related to management of BFRs, there is a need for a quantitative material flowstudy on the amount of BFR found in TVs. This can be achieved by the aid of material flow analysis of the TV setsand by studying the Deca-BDE components present in the TV housing read covers. In this study, the relevant data werecollected from the statistical reports and through field site visits to the WEEE recycling facilities with surveys. Staticand dynamic material flow analysis (MFA) was conducted to determine material flow of BFRs (Deca-BDE) in themanagement of waste TVs. According to this study, in 2011, households in Korea use 73,821ton of TV sets of which23,592ton of waste TV sets were collected and recycled by municipalities and producers. Extended ProducerResponsibility (EPR) played a major role in recycling of WEEE. In this study, it was predicted that Deca-BDE in usestage would reach down to 51.73ton by 2016. In addition, the amount of Deca-BDE present at the disposal and recyclingstage is estimated to be approximately 2.45ton by 2018.