Yttrium aluminum garnet (YAG) powders were synthesized via mechanochemical solid reaction using with three types of aluminum compounds. reacted mechanochemically with all A1 compounds and formed YAM (yttrium aluminum monoclinic), YAG and YAP (yttrium aluminum perovskite) phases depending on the starting materials. The ground samples containing showed the best reactivity, whereas the ground sample containing A100H, which had the largest surface area, exhibited pure YAG after calcination at . The sample containing Al had the least reactivity, producing YAP along with YAG at . The types and grinding characteristics of the starting materials and grinding time are believed to be important factors in the mechanochemical synthesis of YAG.
Nanostructured and composite powders have been prepared by mechanochemical reaction from mixtures of Ti, BN, and powders. The raw materials have reacted to form a uniform mixture of TiN, and or depending on the amount of used in the starting mixtures, and the reaction proceeded through so-called mechanically activated self-sustaining reaction (MSR). Fine TiN and crystallites less than a few tens of nanometer were homogeneously dispersed in the amorphous or matrix after milling for 12 hours. These amorphous matrices became crystalline phases after annealing at high temperatures as expected, but the original microstructure did not change significantly