검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, lenses are fabricated using various nanomaterials as additives to a silicone polymer made with an optimum mixing ratio and short polymerization time. In addition, PVP is added at a ratio of 1% to investigate the physical properties according to the degree of dispersion, and the compatibility with hydrophobic silicone and the possibility of application as a functional lens material are confirmed. The main materials are SIU as a silicone monomer, DMA, a hydrophilic copolymer, EGDMA as a crosslinking agent, and 2H2M as a photoinitiator. Holmium (III) oxide, Europium (III) oxide, aluminum oxide, and PVP are used. When Holmium (III) oxide and Europium (III) oxide are added based on the Ref sample, the characteristics of the lens tend to be similar overall, and the aluminum oxide shows a tendency slightly different from the previous two oxides. This material can be used as a silicone lens material with various nano oxides and polyvinylpyrrolidone (PVP) acting as a dispersant.
        4,000원
        2.
        2015.05 구독 인증기관·개인회원 무료
        TiO2 and SiO2 inorganic nanoparticles were synthesized with poly(oxyethylene methacrylate)(POEM) and blended with 1-methyl-3-propylimidazolium iodide(MPII), poly(ethylene glycol)(PEG), and iodine(I2) to prepare polymer electrolyte membranes for dye-sensitized solar cells(DSSC). The modified nanoparticles were prepared by the grafting of POEM to TiO2 and SiO2 nanoparticles and put into PEG, MPII and I2 to produce polymer electrolyte membranes. The specific interactions of PEG with the modified nanoparticles in addition to ionic liquid were confirmed by FT-IR spectroscopy and DSC, providing gel formation of electrolytes. The efficiency of DSSC employing TiO2-POEM/PEG/MPII/I2(3.3%) was slightly higher than that employing SiO2-POEM/PEG/MPII/I2(2.9%) due to the different ionic conductivity of electrolytes membrane.
        3.
        2011.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.
        4,300원