Hydro-electric power is a method of generating electricity from the rotational force of turbine blades by using the potential energy of a river or reservoir water. Recently, the necessity of small hydropower development is expanding due to the development and support of renewable energy, and because of the difficulty and environmental problems of huge dams. The purpose of this paper is to deal with a method of increasing the efficiency of small water turbine that can be adopt in low head condition. In order to improve the turbine efficiency, channel shape is optimized in order to minimize head loss using computational fluid dynamics. The angle values for the contraction and enlargement part of the channel where the turbine is located are found from the analyses. Additionally, three-dimensional analysis is applied to the optimized channel shape in order to confirm the optimized pipe.
The effect of PEMFC trapezoidal channel wall contact angle on water removal characteristics is
investigated with the volume of fluid (VOF) method. Two different contact angles 60 and 90 degrees
are selected. In the case of the side and top wall contact angle of 60 degrees, stable semi-spherical
droplets move along the top wall slowly. In contrast, complex shaped droplets move along the lower
edge in the case of 90 degrees. Moreover, it is shown that very complex interaction patterns between
different droplets which introduced into the channel at different times.