A miniaturized CMOS bandpass filter for a single RF transceiver system is presented, using diagonally end-shorted coupled lines and lumped capacitors. In contrast to conventional miniaturized coupled line filters, it is proven that the effective permittivity variation of the coupled transmission line has no effect on shifting the center frequency when the bandpass filter is highly miniaturized. A bandpass filter at a center frequency of 2 GHz was fabricated by 0.18μm CMOS technology. The insertion loss with the die area of 1500μm×1000μm is -5.14 dB. Simulated results are well agreed with the easurements. It also verify the center frequency stability in the compact size bandpass filter.
In this letter, the effect of quality factor on center frequency deviation in miniaturized coupled line bandpass filter (BPF) with diagonally end-shorted at their opposite sides and lumped capacitors is theoretically analyzed. The miniaturized BPF of a two-stage structure with two types of quality factors in standard CMOS process was designed and manufactured at 5.5 GHz. The die area of BPF was 1.44×0.41 mm2. The measured center frequency of BPF with a quality factor of 4.9 was deviated from 5.5 GHz to 4.7 GHz. The one with 14.8 was shifted to 5GHz. The theoretical and measured results validate that quality factor influences the center frequency shift of BPF.
A novel miniaturized CMOS C-Band bandpass filter based on diagonally end-shorted coupled lines and interdigital capacitors is proposed. The utilized coupled lines structure reduced the configuration in size, as small as a few degrees. Moreover, the characteristic of interdigital capacitor, relatively high Q and good capacitance tolerance, accounts for the satisfied performance of this new filter. A two-stage bandpass filter was designed and fabricated with chip surface area only 1.02×1.4 mm2.
본 논문에서는 새로운 구조의 사각 링과 깍지 낀 용량성 급전구조를 이용한 마이크로스트립 패치 대역통과필터를 설계 및 제작하였다. 필터의 크기를 줄이고 IEEE 802. 11에 부합하는 Wireless LAM영역(2.45GHz and 5.2GHz)에서 동작할 수 있도록 하기 위해서 패치 구조에 서 변형된 사각 링과 깍지 낀 용량성 급전구조를 적용하였다. 그 결과 설계와 제작이 간단하여 RF(Radio Frequency) 필터로 많이 사용되고 있는 병렬 끝단 결합 마이크로스트립 대역통과필터(Parallel Edge-coupled Microstrip Bandpass Filter)의 최소 단수로 계산되어진 회로에 비하여 60%이상의 크기 감소 효과를 가져왔다. 제작된 필터의 측정 결과, 중심주파수는 2.408GHz와 5.075GHz로 약간씩 하향되었으며, 입력 반사계수는 2.408GHz에서 -39.169dB, 5.075GHz에서 -40.922dB를 나타내었으며, 삽입손실은 2.408GHz에서 -0.437dB, 5.075GHz에서 -1.669dB로 매우 좋은 특성을 얻었다.