검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recovery of copper powder from copper chloride solution used in leaching process was carried out using a cementation method. Cementation is a simple and economical process, necessitating less energy compared with other recovery methods. Cementation utilizes significant difference in standard reduction potential between copper and iron under standard condition. In the present research, Cementation process variables of temperature, time, and added amount of iron scraps were optimized by using design of experiment method and individual effects on yield and efficiency of copper powder recovery were investigated using bench-scale cementation reaction system. Copper powders thus obtained from cementation process were further characterized using various analytical tools such as XRF, SEM-EDS and laser diffraction and scattering methods. Cementation process necessitated further purification of recovered copper powders and centrifugal separation method was employed, which successfully yielded copper powders of more than 99.65% purity and average in size.
        4,000원
        2.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A two-step recovery method was developed to produce copper powders from copper chloride waste solution as byproducts of MoO leaching process. The first step consisted of replacing noble copper ions with external Fe ions which were formed by dissolving iron scraps in the copper chloride waste solution. The replaced copper ions were subsequently precipitated as copper powders. The second step was cementation of entire solution mixture to separate (pure) copper powders from aqueous solution of iron chloride. Cementation process variables of temperature, time, and added amount of iron scraps were optimized by using design of experiment method and individual effects on yield and efficiency of copper powder recovery were investigated. Copper powders thus obtained from cementation process were further characterized using various analytical tools such as XRD, SEM-EDS and laser diffraction and scattering methods.Cementation process necessitated further purification of recovered copper powders and centrifugal separation method was employed, which successfully yielded copper powders of more than 99% purity and average 12m in size.
        4,000원