In this study, we present an algorithm for indoor robot position estimation. Estimating the position of an indoor robot using a fixed imaging device obviates the need for complex sensors or hardware, enabling easy estimation of absolute position through marker recognition. However, location estimation becomes impossible when the device moves away from the surrounding obstacles or the screen, presenting a significant drawback. To solve this problem, we propose an algorithm that improves the precision of robot indoor location estimation using a Gaussian Mixture Model(GMM) and a Kalman filter estimation model. We conducted an actual robot operation experiment and confirmed accurate position estimation, even when the robot was out of the image.
A rectangle-based relative localization method is proposed for a mobile robot based on a novel geometric formulation. In an artificial environment where a mobile robot navigates, rectangular shapes are ubiquitous. When a scene rectangle is captured using a camera attached to a mobile robot, localization can be performed and described in the relative coordinates of the scene rectangle. Especially, our method works with a single image for a scene rectangle whose aspect ratio is not known. Moreover, a camera calibration is unnecessary with an assumption of the pinhole camera model. The proposed method is largely based on the theory of coupled line cameras (CLC), which provides a basis for efficient computation with analytic solutions and intuitive geometric interpretation. We introduce the fundamentals of CLC and describe the proposed method with some experimental results in simulation environment.
This paper proposes how to improve the performance of CSS-based indoor localization system. CSS based localization utilizes signal flight time between anchors and tag to estimate distance. From the distances, the 3-dimensional position is calculated through trilateration. However the error in distance caused from multi-path effect transfers to the position error especially in indoor environment. This paper handles a problem of reducing error in raw distance information. And, we propose the new localization method by pattern matching instead of the conventional localization method based on trilateration that is affected heavily on multi-path error. The pattern matching method estimates the position by using the fact that the measured data of near positions possesses a high similarity. In order to gain better performance of localization, we use EKF(Extended Kalman Filter) to fuse the result of CSS based localization and robot model.
Global positioning system (GPS) is widely used to measure the position of a vehicle. However, the accuracy of the GPS can be severely affected by surrounding environmental conditions. To deal with this problem, the GPS and odometry data can be combined using an extended Kalman filter. For stable navigation of an outdoor mobile robot using the GPS, this paper proposes two methods to evaluate the reliability of the GPS data. The first method is to calculate the standard deviation of the GPS data and reflect it to deal with the uncertainty of the GPS data. The second method is to match the GPS data to the traversability map which can be obtained by classifying outdoor terrain data. By matching of the GPS data with the traversability map, we can determine whether to use the GPS data or not. The experimental results show that the proposed methods can enhance the performance of the GPS‐based outdoor localization.
This paper proposes a technique of indoor localization for mobile robot by so called indoor GPS and EKF. Basically the concept of indoor GPS is similar outdoor GPS, and the indoor GPS gets distances between Anchors and Tag by a ranging method of CSS and then estimates the coordinate by distances and known Anchor positions. After we performed performance test of indoor GPS system in ideal and multipath environment, we configured that the indoor GPS has internal error factors and external error factors. This paper handled a multipath problem belonging to external error factors. At first various direct physical method are introduced to fix the multipath problems, and as expected we got errors corrected considerably. And then the method of selective anchors for indoor GPS is applied. With these two level improvement of indoor GPS performance, EKF(Extended Kalman Filter) is applied to mobile robot in indoor environment. The usefulness of the proposed methods are shown by a series of experiments in a environment giving contaminated data by multipath.
In this paper, we present a global localization and position error compensation method in a known indoor environment using magnet hall sensors. In previous our researches, it was possible to compensate the pose errors of xe, ye, θe correctly on the surface of indoor environment with magnets sets by regularly arrange the magnets sets of identical pattern. To improve the proposed method, new strategy that can realize the global localization by changing arrangement of magnet pole is presented in this paper. Total six patterns of the magnets set form the unique landmarks. Therefore, the virtual map can be built by using the six landmarks randomly. The robots search a pattern of magnets set by rotating, and obtain the current global pose information by comparing the measured neighboring patterns with the map information that is saved in advance. We provide experimental results to show the effectiveness of the proposed method for a differential drive wheeled mobile robot.
This paper proposes a low-complexity indoor localization method of mobile robot under the dynamic environment by fusing the landmark image information from an ordinary camera and the distance information from sensor nodes in an indoor environment, which is based on sensor network. Basically, the sensor network provides an effective method for the mobile robot to adapt to environmental changes and guides it across a geographical network area. To enhance the performance of localization, we used an ordinary CCD camera and the artificial landmarks, which are devised for self-localization. Experimental results show that the real-time localization of mobile robot can be achieved with robustness and accurateness using the proposed localization method.
Recently, with the development of service robots and with the new concept of ubiquitous world, the position estimation of mobile objects has been raised to an important problem. As pre-liminary research results, some of the localization schemes are introduced, which provide the absolute location of the moving objects subjected to large errors. To implement a precise and convenient localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed in this paper. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter: 1. The RFID receiver gets the synchronization signal from the mobile robot and 2. The ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from three beacons and the absolute position information of the beacons themselves. Since it is not easy to install the beacons at a specific position precisely, there exists a large localization error and the installation time takes long. To overcome these problems, and provide a precise and convenient localization system, a new auto calibration algorithm is developed in this paper. Also the extended Kalman filter has been adopted for improving the localization accuracy during the mobile robot navigation. The localization accuracy improvement through the proposed auto calibration algorithm and the extended Kalman filter has been demonstrated by the real experiments.
We present an implementation of particle filter algorithm for global localization and kidnap recovery of mobile robot. Firstly, we propose an algorithm for efficient particle initialization using sonar line features. And then, the average likelihood and entropy of normalized weights are used as a quality measure of pose estimation. Finally, we propose an active kidnap recovery by adding new particle set. New and independent particle set can be initialized by monitoring two quality measures. Added particle set can re-estimate the pose of kidnapped robot. Experimental results demonstrate the capability of our global localization and kidnap recovery algorithm.