검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study proposes a mathematical model to optimize the fighter aircraft-weapon combinations for the ROKAF(Republic Of Korea Air Force). With the recent emergence of the population declining issue in Republic of Korea, there is an urgent need for efficient weapon system operations in light of decreasing military personnel. In order to solve these issues, we consider to reduce the workload of pilots and maintenance personnel by operating an optimal number of weapons instead of deploying all possible armaments for each aircraft type. To achieve this, various factors for optimizing the fighter-weapon combinations were identified and quantified. A model was then constructed using goal programming, with the objective functions based on the compatibility, CEP(Circular Error Probable), and fire range of the weapons, along with the planned wartime mission-specific weapon ratios for each aircraft type. The experimental result's analysis of the proposed model indicate a significant increase in mission performance efficiency compared to the existing system in both operational and maintenance aspects. We hope that our model will be reflected to help improve the operational capabilities of Republic of Korea Air Force.
        4,000원
        2.
        2024.11 구독 인증기관 무료, 개인회원 유료
        This study proposes a mathematical model to optimize the fighter aircraft-weapon combinations for the Republic of Korea Air Force. With the recent emergence of the population cliff issue due to declining birth rates in Korea, there is an urgent need for efficient weapon system operations in light of decreasing military personnel. This study aims to enhance operational environments and mission efficiency within the military. The objective is to reduce the workload of pilots and maintenance personnel by operating an optimal number of weapons instead of deploying all possible armaments for each aircraft type. To achieve this, various factors for optimizing the fighter-weapon combinations were identified and quantified. A model was then constructed using goal programming, with the objective functions based on the compatibility, Circular Error Probable (CEP), and fire range of the weapons, along with the planned wartime mission-specific weapon ratios for each aircraft type. Experimental analysis of the proposed model indicated a significant increase in mission performance efficiency compared to the existing system in both operational and maintenance aspects. It is hoped that this model will be applied in military settings.
        4,000원
        3.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Airpower is a crucial force for suppressing military threats and achieving victory in wars. This study evaluates newly introduced fighter forces, considering factors such as fighter performance and power index, operational environment, capacity of each airbase, survivability, and force sustainment capability to determine the optimal deployment plan that maximizes operational effectiveness and efficiency. Research methods include optimization techniques such as MIP(mixed integer programming), allocation problems, and experimental design. This optimal allocation mathematical model is constructed based on various constraints such as survivability, mission criticality, and aircraft's performance data. The scope of the study focuses the fighter force and their operational radius is limited to major Air Force and joint operations, such as air interdiction, defensive counter-air operations, close air support, maritime operations and so on. This study aims to maximize the operational efficiency and effectiveness of fighter aircraft operations. The results of proposed model through experiments showed that it was for superior to the existing deployment plan in terms of operation and sustainment aspects when considering both wartime and peacetime.
        4,200원
        4.
        2007.08 KCI 등재 서비스 종료(열람 제한)
        크레인 시스템은 항만 터미널 등의 산업현장에서 무거운 물체를 이송하는데 사용되는 장비로서 그 정확성과 신속성을 동시에 만족시키기 위한 연구가 활발히 진행되고 있다. 본 논문은 적응제어기의 일종인 모델매칭 기법을 이용하여 복잡한 3 자유도 비선형 크레인의 제어 시스템에 대한 연구를 제안한다. 피드백 선형화(feedback linearization)를 통해 비선형 크레인 모델을 선형화한 후 PD 제어기를 적용하여 선형 공칭 모텔을 구한다. 이 모델은 시스템 섭동을 갖는 실시간 시스템 모델과 함께, 리아푸노브(Lyapunov) 이론을 적용하여 실시간 섭동에 의해 발생되는 제어오차를 감소하기 위한 보조 제어규칙의 산출에 이용된다. 또한 리아푸노브 안정성이론을 적용하여 구성한 크레인 제어시스템의 안정성 해석을 실시한다. 컴퓨터 시뮬레이션을 통해 제안한 알고리즘의 타당성을 검증하며 기존의 제어방식과 비교 분석하여 그 우수성을 입증한다.